首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
Two distinct merR genes, which regulate expression of the mercuric ion resistance gene (mer), of Thiobacillus ferrooxidans strain E-15 have been cloned, sequenced and termed merR1 and merR2. As a result of gene walking around two merR genes, it was found that these two genes were quite close in distance. The nucleotide sequence of the region (5,001 base pairs; PstI-EcoRI fragment) containing the merR genes was determined. Between the two merR genes, there were five potential open reading frames (ORFs). Two of these were identified as merC genes, and the other three as ORFs 1 to 3. ORFs 1 to 3 show significant homology to merA, tnsA from transposon Tn7, and merA, respectively. Both merR genes consist of a 408 bp ORF coding for 135 amino acids. Their gene products, MerR1 and MerR2, differed at three amino acid positions, and shared 56-57% and 32-38% identity with the MerRs from other Gram-negative and Gram-positive bacteria, respectively. Competitive primer extension analysis revealed that both regulatory genes were expressed in the host cells. These merR genes were located more than 6 kb from either end of the mer structural genes (merC-merA). This is the first example of merR being separated from the mer structural genes. The two merC genes, each of which coded for a 140-amino-acid protein, appeared to be functionally active because Escherichia coli cells carrying these merC genes on plasmid vectors showed hypersensitivity to HgCl2. However, ORFs 1 and 3, which were homologous to merA, seemed to be inactive both structurally and enzymatically. The gene arrangement in this region took on a mirror image, with the truncated tnsA as the symmetrical centre. It is suggested that the Tn7-like factor may have participated in gene duplication events of the mer region, and in its chromosomal integration.  相似文献   

2.
3.
4.
5.
In plasmid NR1 the expression of genes involved in mercury resistance (Tn21) is regulated by the trans-acting product of the merR gene. An in vivo T7 RNA polymerase-promoter overexpression system was used to detect a protein of approximately 16,000 daltons encoded by the merR reading frame. Overexpressed MerR constituted about 5% of labeled proteins. An in vitro MerR-mer-op (mer-op is the mer operator and promoter region) gel electrophoresis binding assay established that the binding site for MerR was located between the putative -35 and -10 sequences of the promoter for the mer structural genes. A nonsense mutation in the carboxyl half of MerR resulted in the loss of biological function and the loss of in vitro mer-op binding properties.  相似文献   

6.
7.
8.
9.
Versatile biosensor vectors for detection and quantification of mercury   总被引:12,自引:0,他引:12  
Three different whole cell biosensor constructs were made by fusing the mercury inducible promoter, P(mer), and its regulatory gene, merR, from transposon Tn21 with reporter genes luxCDABE, lacZYA, or gfp. In Escherichia coli these biosensor constructs responded to low levels of mercury by producing light, beta-galactosidase or green fluorescent protein, respectively. Since the responses were quantitative, the constructs were used to quantify bioavailable mercury in different environments. The constructs were cloned into mini-Tn5 delivery vectors, thus enabling the transfer of the mer-lux, mer-lac or mer-gfp cassettes to a variety of Gram-negative bacteria. The mer-lux cassette was transferred to a Pseudomonas putida strain, which was used to quantify water-extractable mercury in contaminated soil.  相似文献   

10.
11.
Bacterial mer (mercury resistance) gene subclasses in mercury-polluted and pristine natural environments have been profiled by Fluorescent-PCR-restriction fragment length polymorphism (FluRFLP). For FluRFLP, PCR products were amplified from individual mer operons in mercury-resistant bacteria and from DNA isolated directly from bacteria in soil and sediment samples. The primers used to amplify DNA were designed from consensus sequences of the major subclasses of archetypal gram-negative mer operons within Tn501, Tn21, pDU1358, and pKLH2. Two independent PCRs were used to amplify two regions of different lengths (merRT(Delta)P [ca. 1 kb] and merR [ca. 0.4 kb]) starting at the same position in merR. The oligonucleotide primer common to both reactions (FluRX) was labelled at the 5(prm1) end with green (TET) fluorescent dye. Analysis of the mer sequences within databases indicated that the major subclasses could be differentiated on the basis of the length from FluRX to the first FokI restriction endonuclease site. The amplified PCR products were digested with FokI restriction endonuclease, with the restriction digest fragments resolved on an automated DNA sequencing machine which detected only those bands labelled with the fluorescent dye. For each of the individual mer operon sources examined, this single peak (in bases) position was observed in separate digests of either amplified region. These peak positions were as predicted on the basis of DNA sequence. mer PCR products amplified from DNA extracted directly from soil and sediment bacteria were studied in order to determine the profiles of the major mer subclasses present in each natural environment. In addition to peaks of the expected sizes, extra peaks were observed which were not predicted on the basis of DNA sequence. Those appearing in the restriction endonuclease digests of both study regions were presumed to be novel mer types. Genetic heterogeneity within and between mercury-polluted and pristine sites has been studied by this technique. Profiles generated were highly similar for samples taken within the same soil type. The profiles, however, changed markedly on crossing from one soil type to another, with gradients of the different groupings of mer genes identified.  相似文献   

12.
C C Huang  M Narita  T Yamagata  G Endo 《Gene》1999,239(2):361-366
The complete structure of a broad-spectrum mercury resistance module was shown by sequencing the Gram-positive bacterial transposon TnMERI1 of Bacillus megaterium MB1. The regions encoding organomercury resistance were identified. Upstream of a previously identified organomercurial lyase merB (merB1) region of TnMERI1, a second merR (merR2) and a second merB gene (merB2) were found. These genes constitute a second operon (mer operon 2) following a promoter/operator (P(merR2)) region. A third organomercurial lyase gene (merB3) was found immediately upstream of the mer operon (mer operon 1) followed by a promoter/operator (P(merB3)) region homologous to that of the mer operon 1 (P(merR1)-merR1-merE-like-merT-merP-merA). The complete genetic structure of the mercury resistance module is organized as P(merB3)-merB3-P(merR1)-merR1-merE-like-merT+ ++ -merP-merA-P(merR2)-merR2 -merB2-merB1. The subcloning analysis of these three merB genes showed distinct substrate specificity as different organomercury lyase genes.  相似文献   

13.
14.
Using a newly identified organomercury lyase gene (merB3) expression system from Tn MERI1, the mercury resistance transposon first found in Gram-positive bacteria, a dual-purpose system to detect and remove organomercurial contamination was developed. A plasmid was constructed by fusing the promoterless luxAB genes as bioluminescence reporter genes downstream of the merB3 gene and its operator/promoter region. Another plasmid, encoding mer operon genes from merR1 to merA, was also constructed to generate an expression regulatory protein, MerR1, and a mercury reductase enzyme, MerA. These two plasmids were transformed into Escherichia coli cells to produce a biological system that can detect and remove environmental organomercury contamination. Organomercurial compounds, such as neurotoxic methylmercury at nanomolar levels, were detected using the biomonitoring system within a few minutes and were removed during the next few hours.  相似文献   

15.
The self-transmissible plasmid pUO1 from Delftia acidovorans strain B carries two haloacetate-catabolic transposons, TnHad1 and TnHad2, and the mer genes for resistance to mercury. The complete 67,066-bp sequence of pUO1 revealed that the mer genes were also carried by two Tn402/Tn5053-like transposons, Tn4671 and Tn4672, and that the pUO1 backbone regions shared 99% identity to those of the archetype IncP-1beta plasmid R751. Comparison of pUO1 with three other IncP-1beta plasmids illustrated the importance of transposon insertion in the diversity and evolution of this group of plasmids. Mutational analysis of the four outermost residues in the inverted repeats (IRs) of TnHad2, a Tn21-related transposon, revealed a crucial role of the second residue of its IRs in transposition.  相似文献   

16.
Transposon Tn21, Flagship of the Floating Genome   总被引:4,自引:0,他引:4       下载免费PDF全文
The transposon Tn21 and a group of closely related transposons (the Tn21 family) are involved in the global dissemination of antibiotic resistance determinants in gram-negative facultative bacteria. The molecular basis for their involvement is carriage by the Tn21 family of a mobile DNA element (the integron) encoding a site-specific system for the acquisition of multiple antibiotic resistance genes. The paradigm example, Tn21, also carries genes for its own transposition and a mercury resistance (mer) operon. We have compiled the entire 19,671-bp sequence of Tn21 and assessed the possible origins and functions of the genes it contains. Our assessment adds molecular detail to previous models of the evolution of Tn21 and is consistent with the insertion of the integron In2 into an ancestral Tn501-like mer transposon. Codon usage analysis indicates distinct host origins for the ancestral mer operon, the integron, and the gene cassette and two insertion sequences which lie within the integron. The sole gene of unknown function in the integron, orf5, resembles a puromycin-modifying enzyme from an antibiotic producing bacterium. A possible seventh gene in the mer operon (merE), perhaps with a role in Hg(II) transport, lies in the junction between the integron and the mer operon. Analysis of the region interrupted by insertion of the integron suggests that the putative transposition regulator, tnpM, is the C-terminal vestige of a tyrosine kinase sensor present in the ancestral mer transposon. The extensive dissemination of the Tn21 family may have resulted from the fortuitous association of a genetic element for accumulating multiple antibiotic resistances (the integron) with one conferring resistance to a toxic metal at a time when clinical, agricultural, and industrial practices were rapidly increasing the exposure to both types of selective agents. The compendium offered here will provide a reference point for ongoing observations of related elements in multiply resistant strains emerging worldwide.  相似文献   

17.
Transposon Tn21, flagship of the floating genome.   总被引:2,自引:0,他引:2  
The transposon Tn21 and a group of closely related transposons (the Tn21 family) are involved in the global dissemination of antibiotic resistance determinants in gram-negative facultative bacteria. The molecular basis for their involvement is carriage by the Tn21 family of a mobile DNA element (the integron) encoding a site-specific system for the acquisition of multiple antibiotic resistance genes. The paradigm example, Tn21, also carries genes for its own transposition and a mercury resistance (mer) operon. We have compiled the entire 19,671-bp sequence of Tn21 and assessed the possible origins and functions of the genes it contains. Our assessment adds molecular detail to previous models of the evolution of Tn21 and is consistent with the insertion of the integron In2 into an ancestral Tn501-like mer transposon. Codon usage analysis indicates distinct host origins for the ancestral mer operon, the integron, and the gene cassette and two insertion sequences which lie within the integron. The sole gene of unknown function in the integron, orf5, resembles a puromycin-modifying enzyme from an antibiotic producing bacterium. A possible seventh gene in the mer operon (merE), perhaps with a role in Hg(II) transport, lies in the junction between the integron and the mer operon. Analysis of the region interrupted by insertion of the integron suggests that the putative transposition regulator, tnpM, is the C-terminal vestige of a tyrosine kinase sensor present in the ancestral mer transposon. The extensive dissemination of the Tn21 family may have resulted from the fortuitous association of a genetic element for accumulating multiple antibiotic resistances (the integron) with one conferring resistance to a toxic metal at a time when clinical, agricultural, and industrial practices were rapidly increasing the exposure to both types of selective agents. The compendium offered here will provide a reference point for ongoing observations of related elements in multiply resistant strains emerging worldwide.  相似文献   

18.
The mer operon from a strain of Thiobacillus ferrooxidans (C. Inoue, K. Sugawara, and T. Kusano, Mol. Microbiol. 5:2707-2718, 1991) consists of the regulatory gene merR and an operator-promoter region followed by merC and merA structural genes and differs from other known gram-negative mer operons. We have constructed four potential shuttle plasmids composed of a T. ferrooxidans-borne cryptic plasmid, a pUC18 plasmid, and the above-mentioned mer determinant as a selectable marker. Mercury ion-sensitive T. ferrooxidans strains were electroporated with constructed plasmids, and one strain, Y4-3 (of 30 independent strains tested), was found to have a transformation efficiency of 120 to 200 mercury-resistant colonies per microgram of plasmid DNA. This recipient strain was confirmed to be T. ferrooxidans by physiological, morphological, and chemotaxonomical data. The transformants carried a plasmid with no physical rearrangements through 25 passages under no selective pressure. Cell extracts showed mercury ion-dependent NADPH oxidation activity.  相似文献   

19.
20.
The 6645-bp mercury resistance transposon of the chemolithotrophic bacterium Thiobacillus ferrooxidans was cloned and sequenced. This transposon, named Tn5037, belongs to the Tn21 branch of the Tn21 subgroup, many members of which have been isolated from clinical sources. Having the minimum set of the genes (merRTPA), the mercury resistance operon of Tn5037 is organized similarly to most of the Gram-negative bacteria mer operons and is closest to that of Thiobacillus 3.2. The operator-promoter region of the mer operon of Tn5037 also has the common (Tn21/Tn501-like) structure. However, its inverted, presumably MerR protein binding repeats in the operator/promoter element are two base pairs shorter than in Tn21/Tn501. In the merA region, this transposon shares 77.4, 79.1, 83.2 and 87.8% identical bases with Tn21, Tn501, T. ferrooxidance E-15, and Thiobacillus 3.2, respectively. No inducibility of the Tn5037 mer operon was detected in the in vivo experiments. The transposition system (terminal repeats plus gene tnpA) of Tn5037 was inactive in Escherichia coli K12, in contrast to its resolution system (res site plus gene tnpR). However, transposition of Tn5037 in this host was provided by the tnpA gene of Tn5036, a member of the Tn21 subgroup. Sequence analysis of the Tn5037 res site suggested its recombinant nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号