首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectroscopic properties of a mutant cytochrome c peroxidase, in which Asp-235 has been replaced by an asparagine residue, were examined in both nitrate and phosphate buffers between pH 4 and 10.5. The spin state of the enzyme is pH dependent, and four distinct spectroscopic species are observed in each buffer system: a predominantly high-spin Fe(III) species at pH 4, two distinct low-spin forms between pH 5 and 9, and the denatured enzyme above pH 9.3. The spectrum of the mutant enzyme at pH 4 is dependent upon specific ion effects. Increasing the pH above 5 converts the mutant enzyme to a predominantly low-spin hydroxy complex. Subsequent conversion to a second low-spin form is essentially complete at pH 7.5. The second low-spin form has the distal histidine, His-52, coordinated to the heme iron. To evaluate the effect of the changes in coordination state upon the reactivity of the enzyme, the reaction between hydrogen peroxide and the mutant enzyme was also examined as a function of pH. The reaction of CcP(MI,D235N) with peroxide is biphasic. At pH 6, the rapid phase of the reaction can be attributed to the bimolecular reaction between hydrogen peroxide and the hydroxy-ligated form of the mutant enzyme. Despite the hexacoordination of the heme iron in this form, the bimolecular rate constant is approximately 22% that of pentacoordinate wild-type yeast cytochrome c peroxidase. The bimolecular reaction of the mutant enzyme with peroxide exhibits the same pH dependence in nitrate-containing buffers that has been described for the wild-type enzyme, indicating a loss of reactivity with the protonation of a group with an apparent pKa of 5.4. This observation eliminates Asp-235 as the source for this heme-linked ionization and strengthens the hypothesis that the pKa of 5.4 is associated with His-52. The slower phase of the reaction between peroxide and the mutant enzyme saturates at high peroxide concentration and is attributed to conversion of unreactive to reactive forms of the enzyme. The fraction of enzyme which reacts via the slow phase is dependent upon both pH and specific ion effects.  相似文献   

2.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Resonance Raman (RR) spectra are reported for Fe(III), Fe(II), and Fe(II)CO forms of site-directed mutants of the cytochrome c peroxidase variant CCP(MI), cloned in Escherichia coli. The Fe(II) form is five-coordinate (5-c) and high-spin at low pH, but it is six-coordinate (6-c) and low-spin at high pH except when the distal His-52 residue is replaced with Leu, showing the sixth ligand to be the His-52 imidazole. Although the Leu-52 mutant stays 5-c, it does undergo an alkaline transition, as revealed by upshifts and broadening of bands assigned to vinyl C = C stretching (1620 cm-1) and C beta-vinyl bending (402 cm-1). Similar changes are seen for CCP(MI) and other mutants. Thus the alkaline transition induces a conformational change that affects the vinyl groups, probably through changes in their orientation, and that permits the His-52 imidazole to bind the Fe. The RR band arising from the stretching of the proximal Fe(II)-imidazole bond contains components at ca. 235 and 245 cm-1 for CCP(MI), which are believed to reflect a double well potential for the H-bond between the proximal His-175 imidazole and the Asp-235 carboxylate group. Loss of this H-bond by mutation of Asp-235 to Asn results in the loss of these two bands and their replacement by a single band at 205 cm-1. Although the Fe(II)-imidazole stretching mode cannot be observed in the 6-c alkaline form of the enzyme, the sixth ligand in the alkaline form of CCP(MI) is photolabile, and the status of the Fe(II)-imidazole bond can be determined in the resulting 5-c-photoproduct. For CCP(MI) at alkaline pH, the conformation change induces an increase in the 235/245-cm-1 ratio, reflecting a perturbation of the H-bond potential. In the His-52----Leu mutant, a 205-cm-1 band appears along with the 235/245-cm-1 doublet at alkaline pH, indicating partial loss of the proximal H-bond due to the distal alteration. The effect of mutations that perturb the H-bonding network that extends from the distal to the proximal side of the heme is more dramatic: at alkaline pH, His-181----Gly, Arg-48----Leu, and Trp-51----Phe mutants show an Fe(II)-imidazole stretching mode at 205 cm-1 exclusively, indicating complete loss of the proximal Asp-235-His-175 H-bond.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
J A Sigman  A E Pond  J H Dawson  Y Lu 《Biochemistry》1999,38(34):11122-11129
In an effort to investigate factors required to stabilize heme-thiolate ligation, key structural components necessary to convert cytochrome c peroxidase (CcP) into a thiolate-ligated cytochrome P450-like enzyme have been evaluated and the H175C/D235L CcP double mutant has been engineered. The UV-visible absorption, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectra for the double mutant at pH 8.0 are reported herein. The close similarity between the spectra of ferric substrate-bound cytochrome P450cam and those of the exogenous ligand-free ferric state of the double mutant with all three techniques support the conclusion that the latter has a pentacoordinate, high-spin heme with thiolate ligation. Previous efforts to prepare a thiolate-ligated mutant of CcP with the H175C single mutant led to Cys oxidation to cysteic acid [Choudhury et al. (1994) J. Biol. Chem. 267, 25656-25659]. Therefore it is concluded that changing the proximal Asp235 residue to Leu is critical in forming a stable heme-thiolate ligation in the resting state of the enzyme. To further probe the versatility of the CcP double mutant as a ferric P450 model, hexacoordinate low-spin complexes have also been prepared. Addition of the neutral ligand imidazole or of the anionic ligand cyanide results in formation of hexacoordinate adducts that retain thiolate ligation as determined by spectral comparison to the analogous derivatives of ferric P450cam. The stability of these complexes and their similarity to the analogous forms of P450cam illustrates the potential of the H175C/D235L CcP double mutant as a model for ferric P450 enzymes. This study marks the first time a stable cyanoferric complex of a model P450 has been made and demonstrates the importance of the environment around the primary coordination ligands in stabilizing metal-ligand ligation.  相似文献   

5.
Foshay MC  Vitello LB  Erman JE 《Biochemistry》2004,43(17):5065-5072
Replacement of the distal histidine, His-52, in cytochrome c peroxidase (CcP) with a lysine residue produces a mutant cytochrome c peroxidase, CcP(H52K), with spectral and kinetic properties significantly altered compared to those of the wild-type enzyme. Three spectroscopically distinct forms of the enzyme are observed between pH 4.0 and 8.0 with two additional forms, thought to be partially denatured forms, making contributions to the observed spectra at the pH extremes. CcP(H52K) exists in at least three, slowly interconverting conformational states over most of the pH range that was investigated. The side chain epsilon-amino group of Lys-52 has an apparent pK(a) of 6.4 +/- 0.2, and the protonation state of Lys-52 affects the spectral properties of the enzyme and the reactions with both hydrogen peroxide and HCN. In its unprotonated form, Lys-52 acts as a base catalyst facilitating the reactions of both hydrogen peroxide and HCN with CcP(H52K). The major form of CcP(H52K) reacts with hydrogen peroxide with a rate approximately 50 times slower than that of wild-type CcP but reacts with HCN approximately 3 times faster than does the wild-type enzyme. The major form of the mutant enzyme has a higher affinity for HCN than does native CcP.  相似文献   

6.
Both cytochrome c peroxidase (CcP) and a mutant cytochrome c peroxidase in which the distal histidine has been replaced by leucine, CcP(H52L), are converted to hydroxy-ligated derivatives at alkaline pH. In CcP, the hydroxy-ligated derivative is subsequently converted to a bis-imidazole species prior to protein denaturation while the initial hydroxy-ligated CcP(H52L) is converted to a second, spectroscopically distinct hydroxy-ligated species prior to denaturation. The spectra of the alkaline forms of CcP and CcP(H52L) have been determined between 310 and 700 nm. The pH dependence of the rate of reaction between CcP(H52L) and hydrogen peroxide has been extended to pH 10. The hydroxy-ligated form of CcP(H52L) reacts with hydrogen peroxide 4 times more rapidly than the pentacoordinate, high-spin form of CcP(H52L) that exists at neutral pH. The rate of the reaction between p-nitroperoxybenzoic acid and CcP(H52L) has been measured between pH 4 and pH 8. Neutral p-nitroperoxybenzoic acid reacts with CcP(H52L) 10(5) times more slowly than with CcP while the negatively charged p-nitroperoxybenzoate reacts with CcP(H52L) 10(3) times more slowly than with CcP. These data indicate that the role of the distal histidine during the initial formation of the peroxy anion/heme iron complex is not simply base catalysis.  相似文献   

7.
Replacement of the axial histidine ligand with exogenous imidazole has been accomplished in a number of heme protein mutants, where it often serves to complement the functional properties of the protein. In this paper, we describe the effects of pH and buffer ion on the crystal structure of the H175G mutant of cytochrome c peroxidase, in which the histidine tether between the heme and the protein backbone is replaced by bound imidazole. The structures show that imidazole can occupy the proximal H175G cavity under a number of experimental conditions, but that the details of the interaction with the protein and the coordination to the heme are markedly dependent on conditions. Replacement of the tethered histidine ligand with imidazole permits the heme to shift slightly in its pocket, allowing it to adopt either a planar or distally domed conformation. H175G crystallized from both high phosphate and imidazole concentrations exists as a novel, 5-coordinate phosphate bound state, in which the proximal imidazole is dissociated and the distal phosphate is coordinated to the iron. To accommodate this bound phosphate, the side chains of His-52 and Asn-82 alter their positions and a significant conformational change in the surrounding protein backbone occurs. In the absence of phosphate, imidazole binds to the proximal H175G cavity in a pH-dependent fashion. At pH 7, imidazole is directly coordinated to the heme (d(Fe--Im) = 2.0 A) with a nearby distal water (d(Fe--HOH) = 2.4 A). This is similar to the structure of WT CCP except that the iron lies closer in the heme plane, and the hydrogen bond between imidazole and Asp-235 (d(Im--Asp) = 3.1 A) is longer than for WT CCP (d(His--Asp) = 2.9 A). As the pH is dropped to 5, imidazole dissociates from the heme (d(Fe--Im) = 2.9 A), but remains in the proximal cavity where it is strongly hydrogen bonded to Asp-235 (d(Im--Asp) = 2.8 A). In addition, the heme is significantly domed toward the distal pocket where it may coordinate a water molecule. Finally, the structure of H175G/Im, pH 6, at low temperature (100 K) is very similar to that at room temperature, except that the water above the distal heme face is not present. This study concludes that steric restrictions imposed by the covalently tethered histidine restrain the heme and its ligand coordination from distortions that would arise in the absence of the restricted tether. Coupled with the functional and spectroscopic properties described in the following paper in this issue, these structures help to illustrate how the delicate and critical interactions between protein, ligand, and metal modulate the function of heme enzymes.  相似文献   

8.
J D Satterlee  J E Erman 《Biochemistry》1991,30(18):4398-4405
Proton NMR assignments of the heme pocket and catalytically relevant amino acid protons have been accomplished for cyanide-ligated yeast cytochrome c peroxidase. This form of the protein, while not enzymatically active itself, is the best model available (that displays a resolvable proton NMR spectrum) for the six-coordinate low-spin active intermediates, compounds I and II. The assignments were made with a combination of one- and two-dimensional nuclear Overhauser effect methods and demonstrate the utility of NOESY experiments for paramagnetic proteins of relatively large size (Mr 34,000). Assignments of both isotope exchangeable and nonexchangeable proton resonances were obtained by using enzyme preparations in both 90% H2O/10% D2O and, separately, in 99.9% D2O solvent systems. Complete resonance assignments have been achieved for the proximal histidine, His-175, and His-52, which is a member of the catalytic triad on the distal side of the heme. In addition, partial assignments are reported for Trp-51 and Arg-48, catalytically important residues, both on the distal side. Aside from His-175, partial assignments for amino acids on the proximal side of the heme are proposed for the alanines at primary sequence positions 174 and 176 and for Thr-180 and Leu-232.  相似文献   

9.
The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent cations should modulate the affinity of the W191G cavity for ligand binding are addressed in this study. Competitive binding titrations of the imidazolium ion to W191G as a function of [K+] show that potassium competes weakly with the binding of imidazoles. The dissociation constant observed for potassium binding (18 mM) is more than 3,000-fold higher than that for 1,2-dimethylimidazole (5.5 microM) in the absence of competing cations. Significantly, the W191G-D235N double mutant shows no evidence for binding imidazoles in their cationic or neutral forms, even though the structure of the cavity remains largely unperturbed by replacement of the carboxylate. Refined crystallographic B-values of solvent positions indicate that the weakly bound potassium in W191G is significantly depopulated in the double mutant. These results demonstrate that the buried negative charge of Asp-235 is an essential feature of the cation binding determinant and indicate that this carboxylate plays a critical role in stabilizing the formation of the Trp-191 radical cation.  相似文献   

10.
A series of ferric and ferrous derivatives of wild-type ascorbate peroxidase (APX) and of an engineered K+-site mutant of APX that has had its potassium cation binding site removed have been examined by electronic absorption and magnetic circular dichroism (MCD) spectroscopy at 4??°C. Wild-type ferric APX has spectroscopic properties that are very similar to those of ferric cytochrome c peroxidase (CCP) and likely exists primarily as a five-coordinate high-spin heme ligated on the proximal side by a histidine at pH 7. There is also evidence for minority contributions from six-coordinate high- and low-spin species (histidine-water, histidine-hydroxide, and bis-histidine). The K+-site mutant of APX varies considerably in the electronic absorption and MCD spectra in both the ferric and ferrous states when compared with spectra of the wild-type APX. The electronic absorption and MCD spectra of the engineered K+-site APX mutant are essentially identical to those of cytochrome b 5, a known bis-imidazole (histidine) ligated heme system. It therefore appears that the K+-site mutant of APX has undergone a conformational change to yield a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH. This conformational change is the result of mutagenesis of the protein to remove the K+-binding site which is located ~8?Å from the peroxide binding pocket. Thus, mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.  相似文献   

11.
L Banci  I Bertini  E A Pease  M Tien  P Turano 《Biochemistry》1992,31(41):10009-10017
1H NMR spectra at 200- and 600-MHz of manganese peroxidase from Phanerochaete chrysosporium and of its cyanide derivative are reported. The spectrum of the native protein is very similar to that of other peroxidases. The assignment of the spectrum of the cyanide derivative has been performed through 1D NOE, 2D NOESY, and COSY experiments. This protein is very similar to lignin peroxidase, the only meaningful difference being the shift of H delta 2 of the proximal histidine. The spectra of the cyanide derivative of these two proteins are compared with those of horseradish peroxidase and cytochrome c peroxidase. The shift pattern of the protons of the proximal histidine is discussed relative to the structural properties which affect the Fe3+/Fe2+ redox potential.  相似文献   

12.
The bimolecular reaction between Escherichia coli-produced cytochrome-c peroxidase (CcP(MI)) and hydrogen peroxide is identical to that of native yeast cytochrome-c peroxidase (CcP) and hydrogen peroxide in the neutral pH region. Both enzymes have pH-independent bimolecular rate constants of 46 microM-1.s-1 for the reaction with hydrogen peroxide. A second mutant enzyme, E. coli-produced cytochrome-c peroxidase mutant with phenylalanine at position 191 (CcP(MI, F191)), has a pH-independent bimolecular rate constant for the hydrogen peroxide reaction of 65 microM-1.s-1, 40% larger than for CcP or CcP(MI). The initial peroxide-oxidation product of CcP(MI, F191) is an oxyferryl porphyrin pi-cation radical intermediate in contrast to the oxyferryl amino-acid radical intermediate formed upon oxidation of CcP or CcP(MI) with hydrogen peroxide. The reactions of all three enzymes with hydrogen peroxide are pH-dependent in KNO3-containing buffers. The reactions are influenced by an ionizable group, which has an apparent pKa of 5.4 in all three enzymes. The enzymes react with hydrogen peroxide when the ionizable group is unprotonated. Both CcP(MI) and CcP(MI, F191) have slightly smaller pH stability regions compared to CcP as assessed by the hydrogen peroxide titer and spectral analysis. The alteration in structural stability must be attributed to differences in the primary sequence between CcP and CcP(MI) which occur at positions -2, -1, 53 and 152.  相似文献   

13.
Yeast cytochrome c peroxidase (CcP) and horse metmyoglobin (Mb) bind HN3 with similar affinities at 25 degrees C. The pH-independent equilibrium association constants for formation of the CcP.HN3 and Mb.HN3 complexes are (1.05 +/- 0.06)x10(5) and (1.6 +/- 0.8)x10(5) M(-1), respectively. However, the thermodynamic parameters for formation of the two complexes are quite different. The DeltaH0 values for formation of CcP.HN3 and Mb.HN3 are -16.4 +/- 0.7 and -9.0 +/- 0.5 kcal/mol, respectively, and the Delta S0 values are -32 +/- 2 and -16 +/- 2 cal/deg mol, respectively. The proton associated with HN3 is retained in both protein complexes at low pH but dissociates with apparent pKA values of 5.5 +/- 0.2 and > or =8.2 for the Mb.HN3 and CcP.HN3 complexes, respectively. CcP and Mb differ significantly in their reactivity toward the azide anion, N3-. CcP binds N3- very weakly, if at all, and only an upper-limit of 18 +/-5 M(-1) for the pH-independent equilibrium association constant for the CcP.N3- complex can be determined. Mb binds N3- with an association constant of (1.8 +/- 0.1)x10(4) M(-1). The ratio of the equilibrium association constants for HN3 and N3- binding provides a discrimination factor between the neutral and charged forms of the ligand. The discrimination factor is greater than 5800 for CcP but only nine for Mb. Protonation of the distal histidines in the two proteins influences binding of HN3. Protonation of His-64 in Mb enhances HN3 binding due to a gating mechanism while protonation of His-52 in CcP decreases the affinity for HN3 due to loss of base-assisted association of the ligand to the heme iron.  相似文献   

14.
The reduction potentials of 22 yeast cytochrome c peroxidase (CcP) mutants were determined at pH 7.0 in order to determine the effect of both heme pocket and surface mutations on the Fe(III)/Fe(II) redox couple of CcP, as well as to determine the range in redox potentials that could be obtained through point mutations in the enzyme. Spectroscopic properties of the Fe(III) and Fe(II) forms of the mutant enzymes are also reported. The mutations include variants in the distal and proximal heme pockets as well as on the enzyme surface and involve single, double, and triple point mutations. A spectrochemical redox titration technique used in this study gave an E(0') value of -189 mV for yeast CcP compared to a previously reported value of -194 mV determined by potentiometry [C.W. Conroy, P. Tyma, P.H. Daum, J.E. Erman, Biochim. Biophys. Acta 537 (1978) 62-69]. Both positive and negative shifts in the reduction potential from that of the wild-type enzyme were observed, spanning a range of 113 mV. The His-52-->Asn mutation gave the most negative potential, -259 mV, while a triple mutant in which the three distal pocket residues, Arg-48, Trp-51, and His-52, were all converted to leucine residues gave the most positive potential, -146 mV.  相似文献   

15.
The crystal structure of heme oxygenase-1 suggests that Asp-140 may participate in a hydrogen bonding network involving ligands coordinated to the heme iron atom. To examine this possibility, Asp-140 was mutated to an alanine, phenylalanine, histidine, leucine, or asparagine, and the properties of the purified proteins were investigated. UV-visible and resonance Raman spectroscopy indicate that the distal water ligand is lost from the iron in all the mutants except, to some extent, the D140N mutant. In the D140H mutant, the distal water ligand is replaced by the new His-140 as the sixth iron ligand, giving a bis-histidine complex. The D140A, D140H, and D140N mutants retain a trace (<3%) of biliverdin forming activity, but the D140F and D140L mutants are inactive in this respect. However, the two latter mutants retain a low ability to form verdoheme, an intermediate in the reaction sequence. All the Asp-140 mutants exhibit a new peroxidase activity. The results indicate that disruption of the distal hydrogen bonding environment by mutation of Asp-140 destabilizes the ferrous dioxygen complex and promotes conversion of the ferrous hydroperoxy intermediate obtained by reduction of the ferrous dioxygen complex to a ferryl species at the expense of its normal reaction with the porphyrin ring.  相似文献   

16.
Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution   总被引:16,自引:0,他引:16  
The crystal structure of cytochrome c peroxidase (EC 1.11.1.5) has been refined to an R factor of 0.20 computed for all reflections to 1.7 A. The refined molecular model includes 263 bound water molecules and allows for x-ray scattering by amorphous solvent. The mean positional error in atomic coordinates is estimated to lie between 0.12 and 0.21 A. Two factors are identified which may account for the ability of the enzyme to stabilize high-oxidation states of the heme iron during catalysis: 1) the proximal histidine forms a hydrogen bond with a buried aspartic acid side chain, Asp-235; and 2) the heme environment is more polar than in the cytochromes c or globins, owing to the presence of the partially buried side-chain of Arg-48 and five water molecules bound in close proximity to the heme. Two of these occupy the presumed peroxide-binding site. Two candidates are likely for the side chain that is oxidized to a free radical during formation of Compound I: 1) Trp-51, which rests 3.3 A above the heme plane in close proximity (2.7 A) to the sixth coordination position; and 2) Met-172, which is 3.7 A from the heme. Nucleophilic stabilization of the methionyl cation radical may be possible via Asp-235. His-181 is found to lie coplanar with the heme in a niche between the two propionates near the suspected cytochrome c-binding site. A network of hydrogen bonds involving this histidine may provide a preferred pathway for electron transfer between hemes.  相似文献   

17.
X Wang  Y Lu 《Biochemistry》1999,38(28):9146-9157
The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely.  相似文献   

18.
T D Pfister  A J Gengenbach  S Syn  Y Lu 《Biochemistry》2001,40(49):14942-14951
The role of two tryptophans (Trp51 and Trp191) and six tyrosines (Tyr36, Tyr39, Tyr42, Tyr187, Tyr229, and Tyr236) in yeast cytochrome c peroxidase (CcP) has been probed by site-directed mutagenesis. A series of sequential mutations of these redox-active amino acid residues to the corresponding, less oxidizable residues in lignin peroxidase (LiP) resulted in an increasingly more stable compound I, with rate constants for compound I decay decreasing from 57 s(-1) for CcP(MI, W191F) to 7 s(-1) for CcP(MI, W191F,W51F,Y187F,Y229F,Y236F,Y36F,Y39E,Y42F). These results provide experimental support for the proposal that the stability of compound I depends on the number of endogenous oxidizable amino acids in proteins. The higher stability of compound I in the variant proteins also makes it possible to observe its visible absorption spectroscopic features more clearly. The effects of the mutations on oxidation of ferrocytochrome c and 2,6-dimethoxyphenol were also examined. Since the first mutation in the series involved the change of Trp191, a residue that plays a critical role in the electron transfer pathway between CcP and cyt c, the ability to oxidize cyt c was negligible for all mutant proteins. On the other hand, the W191F mutation had little effect on the proteins' ability to oxidize 2,6-dimethoxyphenol. Instead, the W51F mutation resulted in the largest increase in the k(cat)/K(M), from 2.1 x 10(2) to 5.0 x 10(3) M(-1) s(-1), yielding an efficiency that is comparable to that of manganese peroxidase (MnP). The effect in W51F mutation can be attributed to the residue's influence on the stability and thus reactivity of the ferryl oxygen of compound II, whose substrate oxidation is the rate-determining step in the reaction mechanism. Finally, out of all mutant proteins in this study, only the variant containing the Y36F, Y39E, and Y42F mutations was found to prevent covalent protein cross-links in the presence of excess hydrogen peroxide and in the absence of exogenous reductants. This finding marks the first time a CcP variant is incapable of forming protein cross-links and confirms that one of the three tyrosines must be involved in the protein cross-linking.  相似文献   

19.
Vibrational frequencies associated with FeC and CO stretching and FeCO bending modes have been determined via resonance Raman (RR) and infrared (IR) spectroscopy for cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn; Trp-191---Phe) and distal (Trp-51----Phe; Arg-48----Leu and Lys) side of the heme. The data were analyzed with the aid of a recently established correlation between nu FeC and nu CO, which can be used to distinguish between back-bonding and axial ligand donor effects. At high pH all adducts showed essentially the same vibrational pattern (form I') with nu FeC approximately 505 cm-1, nu CO approximately 1948 cm-1, and delta FeCO (weak RR band) approximately 576 cm-1. These frequencies are very similar to those shown by the myoglobin CO adduct and imply a "normal" H-bond of the proximal histidine. At pH 7 (pH 6 for Asn-235 and Leu-48), different forms are seen for different proteins: form I (nu FeC approximately 500 cm-1, nu CO = 1922-1941 cm-1, and delta FeCO approximately 580 cm-1, very weak) in the case of CCP(MI) and Phe-191, as well as bakers' yeast CCP, or form II (nu FeC approximately 530 cm-1, nu CO = 1922-1933 cm-1, and delta FeCO = 585 cm-1, moderately strong) for Asn-235 and Phe-51.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To test the effect of alternative bases at the distal histidine position, four CcP variants have been constructed that substitute the two basic residues, aspartate and glutamate, and their amides, asparagine and glutamine, for histidine-52, i.e., CcP(H52D), CcP(H52E), CcP(H52N), and CcP(H52Q). All four mutants catalyze oxidation of ferrocytochrome c by H(2)O(2) with steady-state activities that are between 250 and 7700 times slower than wild-type CcP at pH 6.0, 0.10M ionic strength, 25°C. The rate of Compound I formation is decreased between 3.5 and 5.4 orders of magnitude for the mutants compared to wild-type CcP, with the rate of the reaction between CcP(H52Q) and H(2)O(2) the slowest yet observed for any CcP mutant. A correlation between the rate of Compound I formation and the rate of HCN binding for CcP and various CcP distal pocket mutants provides strong evidence that the rate-limiting step in CcP Compound I formation is deprotonation of H(2)O(2) within the distal heme pocket under the experimental conditions employed in this study. While CcP(H52E) reacts stoichiometrically with H(2)O(2) to form Compound I, only ~36% of CcP(H52D), ~21% of CcP(H52Q) and ~8% of CcP(H52N) appear to be converted to Compound I during their respective reactions with H(2)O(2). This is partially due to the slow rate of Compound I formation and the rapid endogenous decay of Compound I for these mutants. The pathways for the endogenous decay of Compound I for the four mutants used in this study are distinct from that of wild-type CcP Compound I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号