共查询到20条相似文献,搜索用时 15 毫秒
1.
Grewal TS Rossnagel BG Pozniak CJ Scoles GJ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,116(4):529-539
Net blotch of barley, caused by Pyrenophora teres Drechs., is an important foliar disease worldwide. Deployment of resistant cultivars is the most economic and eco-friendly control method. This report describes mapping of quantitative trait loci (QTL) associated with net blotch resistance in a doubled-haploid (DH) barley population using diversity arrays technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly (susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch (SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines was constructed using 457 DArT and 11 SSR markers. A major NFNB seedling resistance QTL, designated QRpt6, was mapped to chromosome 6H for isolates WRS858 and WRS1607. QRpt6 was associated with adult-plant resistance in the 2005 and 2006 field trials. Additional QTL for NFNB seedling resistance to the more virulent isolate WRS858 were identified on chromosomes 2H, 4H, and 5H. A seedling resistance QTL (QRpts4) for the SFNB isolate WRS857 was detected on chromosome 4H as was a significant QTL (QRpt7) on chromosome 7H. Three QTL (QRpt6, QRpts4, QRpt7) were associated with resistance to both net blotch forms and lines with one or more of these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked to QRpt6 and QRpts4 were identified and validated in an unrelated barley population. The major 6H QTL, QRpt6, may provide adequate NFNB field resistance in western Canada and could be routinely selected for using molecular markers in a practical breeding program. 相似文献
2.
Ronja Wonneberger Andrea Ficke Morten Lillemo 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(10):2025-2043
Key message
Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects.Abstract
Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.3.
Jessica Bovill Anke Lehmensiek Mark W. Sutherland Greg J. Platz Terry Usher Jerome Franckowiak Emma Mace 《Molecular breeding : new strategies in plant improvement》2010,26(4):653-666
Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is the fungal pathogen responsible for spot blotch in barley (Hordeum vulgare L.) and occurs worldwide in warmer, humid growing conditions. Current Australian barley varieties are largely susceptible
to this disease and attempts are being made to introduce sources of resistance from North America. In this study we have compared
chromosomal locations of spot blotch resistance reactions in four North American two-rowed barley lines; the North Dakota
lines ND11231-12 and ND11231-11 and the Canadian lines TR251 and WPG8412-9-2-1. Diversity arrays technology-based PCR, expressed
sequence tag and SSR markers have been mapped across four populations derived from crosses between susceptible parental lines
and these four resistant parents to determine the location of resistance loci. Quantitative trait loci (QTL) conferring resistance
to spot blotch in adult plants (APR) were detected on chromosomes 3HS and 7HS. In contrast, seedling resistance (SLR) was
controlled solely by a locus on chromosome 7HS. The phenotypic variance explained by the APR QTL on 3HS was between 16 and
25% and the phenotypic variance explained by the 7HS APR QTL was between 8 and 42% across the four populations. The SLR QTL
on 7HS explained between 52 and 64% of the phenotypic variance. An examination of the pedigrees of these resistance sources
supports the common identity of resistance in these lines and indicates that only a limited number of major resistance loci
are available in current two-rowed germplasm. 相似文献
4.
Katja?Witzel Christof?Pietsch Marc?Strickert Andrea?Matros Marion?S.?R?der Winfriede?Weschke Ulrich?Wobus Hans-Peter?Mock
Barley (Hordeum vulgare) is an important cereal crop grown for both the feed and malting industries. Hence, there is great interest to gain deeper
insight into the determinants of grain nutritional quality in order to improve the assessment of new traits. Two-dimensional
gel electrophoresis was employed for the characterization of the grain proteome of doubled-haploid introgression lines (IL)
representing a wild barley genome (Hordeum spontaneum Hs213) within a modern cultivar background (H. vulgare cv. Brenda). Proteome maps were subjected to differential cluster analysis and revealed ILs with similar or different protein
expression patterns compared to the Brenda parent. A total of 51 quantitative trait loci for protein expression (pQTL) were
detected, and proteins underlying these pQTL were further examined by mass spectrometry. Identification was successful for
49 of the segregating spots and functional annotation of proteins revealed that most proteins are involved in metabolism and
disease/defence-related processes. Among those, multigene families of glyceraldehyde-3-phosphate dehydrogenases, heat shock
proteins, peroxidases, and serpins were identified. Overall, eight pQTL signals were discovered in two independently grown
sets of plants. The mapped spots included protein disulfide isomerase, α-amylase inhibitor BDAI, NADP malic enzyme, adenosine
kinase and peroxidase BP1. Specific marker information of proteins involved in developmental events and protein storage as
well as in disease- and defence-related processes now allows for targeted breeding approaches to improve the grain quality
in barley. 相似文献
5.
K. Richter J. Schondelmaier C. Jung 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,97(8):1225-1234
Resistance loci for seedling-stage resistance to net blotch disease (Drechslera teres) in barley were mapped with molecular markers in an F2 population derived from a cross between the susceptible barley cultivar ‘Arena’ and the resistant Ethiopian landrace ‘Hor
9088’. Disease reactions were scored with first and second leaves of 2-week-old plants 7 and 9 days after inoculation with
a single spore-derived isolate. For linkage analysis, 22 RFLP markers and 284 AFLP markers were used. The seven linkage groups
covered 1153.3 cM with an average marker interval of 3.76 cM. The resistance was determined to be inherited in a quantitative
manner. Altogether, 12 QTLs were mapped with positions depending on the leaf used for testing and the time period after infection.
Heritability in the broad sense ranged between 0.21 and 0.37.
Received: 26 May 1998 / Accepted: 9 June 1998 相似文献
6.
Nannan Yang Gregory Reighard David Ritchie William Okie Ksenija Gasic 《Tree Genetics & Genomes》2013,9(2):573-586
Bacterial spot, caused by Xanthomonas arboricola pv. pruni (Xap), is a serious disease that can affect peach fruit quality and production worldwide. This disease causes severe defoliation and blemishing of fruit, particularly in areas with high rainfall, strong winds, high humidity, and sandy soil. The molecular basis of its tolerance and susceptibility in peach is yet to be understood. An F2 population of 63 genotypes derived from a cross between peaches “O’Henry” (susceptible) and “Clayton” (resistant) has been used for linkage map construction and quantitative trait loci (QTL) mapping. Phenotypic data for leaf and fruit response to Xap infection were collected over 2 years at two locations. A high-density genetic linkage map that covers a genetic distance of 421.4 cM with an average spacing between markers of 1.6 cM was developed using the International Peach Single Nucleotide Polymorphism Consortium (IPSC) 9K array v1. Fourteen QTLs with an additive effect on Xap resistance were detected, including four major QTLs on linkage groups (LG) 1, 4, 5, and 6. Major QTLs, Xap.Pp.OC-4.1 and Xap.Pp.OC-4.2, on LG4 were associated with Xap resistance in leaf; Xap.Pp.OC-5.1 on LG5 was associated with Xap resistance in both leaf and fruit, while Xap.Pp.OC-1.2 and Xap.Pp.OC-6.1 on LG1 and LG6, respectively, were associated with Xap resistance in fruit. This suggested separate regulation of leaf and fruit resistance for Xap in peach as well as participation of genes involved in general plant response to biotic stress. The potential for marker-assisted selection for Xap resistance in peach is discussed. 相似文献
7.
Pasting properties are important characteristics of barley starch from a processing standpoint. A shorter time to peak viscosity and lower pasting temperature are favorable to both malting and food processing. This study was conducted to identify quantitative trait loci (QTLs) determining pasting properties of barley flour using a doubled haploid population of 177 lines from the cross between six-rowed Yerong and two-rowed Franklin. Yerong is a feed barley with a longer time to peak viscosity and a higher pasting temperature than the other parent Franklin which is a malting barley. Field trials were conducted in three different sites/years. Seven different parameters representing the pasting properties were measured using a Rapid Visco-analyser (RVA). DH lines showed significant differences in all seven parameters in most of the sites/years. For example, the pasting temperature of different DH lines ranged from 73.8 to 89.5 in 2006/2007 MTP field trial. Twenty one QTLs were associated with flour pasting properties. These QTLs were distributed on 11 chromosome regions. Genetic variance explained by these QTLs varies from 4.4 to 15.2%. The most important QTLs controlling the time to peak viscosity and pasting temperature were located on 1H, 2H, 3H and 7H. Results showed that some of the pasting properties can be effectively selected by the combination of several molecular markers. 相似文献
8.
Mapping quantitative trait loci with DNA microsatellites in a commercial dairy cattle population 总被引:3,自引:0,他引:3
Individual loci affecting economically important traits can be located using genetic linkage between quantitative trait loci and genetic markers. In the ‘granddaughter’ experimental design, heterozygous grandsires and their sons are genotyped for the genetic marker, while the quantitative trait records of the granddaughters are used for statistical analysis. Ten DNA microsatellite markers were used to look for associations with quantitative trait loci affecting milk production traits in seven Israeli Holstein grandsire families. At least 60% more grandsires were heterozygous, and 40% fewer individuals were discarded because of unknown paternal allele origin, as compared with diallelic markers. The effects of paternal alleles for locus D21S4 on kg milk and protein were significant (P < 0.025). The allele substitution effects for sire 783 were 283 kg milk and 5.7 kg protein. For both traits, progeny of sire 783 that inherited allele ‘18’ had higher evaluations than progeny that inherited allele ‘21’. These results were verified by genotyping 151 of his daughters. Thus, the rate of genetic gain for protein production can be increased by selecting progeny of sire 783 carrying allele ‘18’ at this locus. 相似文献
9.
Selenium is essential for many organisms, but is toxic at higher levels. To investigate the genetic basis of selenate tolerance in Arabidopsis thaliana, quantitative trait loci (QTL) associated with selenate tolerance in accessions Landsberg erecta and Columbia were mapped using recombinant inbred lines (RILs). The selenate tolerance index (TI(D10) = root growth + 30 microm selenate/root growth control x 100%) was fourfold higher for parental line Col-4 (59%) than for parent Ler-0 (15%). Among the 96 F8 RILs, TI(D10) ranged from 11 to 75% (mean 37%). Using composite interval mapping, three QTL were found on chromosomes 1, 3 and 5, which together explained 24% of variation in TI(D10) and 32% of the phenotypic variation for the difference in root length +/- Se (RL(D10)). Highly significant epistatic interactions between the QTL and markers on chromosome 2 explained additional variation for both traits. Potential candidate genes for Se tolerance in each of the QTL regions are discussed. These results offer insight into the genetic basis of selenate tolerance, and may be useful for identification of selenate-tolerance genes. 相似文献
10.
Lisa Surber Hussein Abdel-Haleem Jack Martin Pat Hensleigh Dennis Cash Jan Bowman Tom Blake 《Molecular breeding : new strategies in plant improvement》2011,28(2):189-200
Barley forage quality has a direct relationship to animal performance, but forage quality traits are often neglected or not accessible to the plant breeders. Doubled haploid lines (145) from the cross Steptoe × Morex were grown in 2 years of trails under irrigated conditions to evaluate the variation in forage quality characteristics, identify quantitative trait loci (QTL) for these traits and determine if variation in forage quality characteristics among barley lines is heritable. Forage quality traits were determined at plant anthesis and at peak forage yield stages. A total of 32 QTL were identified that conditioned forage traits at anthesis stage, and 10 QTLs were identified at peak forage yield. At anthesis, forage traits were highly to moderate heritablely, while at peak forage yield, all traits were weakly heritable, indicating that selection progress for these traits will be effective at early stages of maturity. This research has identified and mapped QTL for barley forage quality and will allow deployment of genes for improved forage quality via marker-assisted selection. 相似文献
11.
Leaf pubescence in cotton have a potential for insect pest management. Varying degrees of leaf trichome density in Gossypium species and cultivars have been associated to a series of five genes, referred to as t(1)-t(5). We used two segregating interspecific G. hirsutum x G. barbadense backcross populations developed in our laboratory to assess qualitatively and quantitatively leaf and stem pubescence. QTL analyses were performed using simple and composite interval mapping. Based on both types of measurements and under both types of QTL analyses, nine QTLs met permutation-based thresholds. The nine QTLs mapped to four different chromosome regions. Highest LOD values corresponded to the QTLs detected on c6 (four colocalized QTLs) and on D03 (two QTLs) for which the higher pubescence in the progeny derived from the pubescent G. hirsutum parent alleles. Conversely, on c17 (one QTL) and A01 (two QTLs), the G. hirsutum parental alleles affected negatively pubescence. These results combined with another published study confirm (1) the location in a center region of chromosome 6 of the t(1) locus as a major locus/gene determining leaf pubescence, and (2) additional genes located on seven additional chromosomes have been shown to impart trichome density either positively or negatively. The existence of a high density of PCR-based loci in most of the regions identified as harboring leaf pubescence QTLs, particularly that on chromosome 6, will facilitate future efforts for map-based cloning. 相似文献
12.
Jonathan K. Richards Timothy L. Friesen Robert S. Brueggeman 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(5):915-927
Key message
A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci.Abstract
Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; ?log10p value?>3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R 2?≥?0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.13.
Mapping quantitative trait loci with epistatic effects 总被引:1,自引:0,他引:1
Epistatic variance can be an important source of variation for complex traits. However, detecting epistatic effects is difficult primarily due to insufficient sample sizes and lack of robust statistical methods. In this paper, we develop a Bayesian method to map multiple quantitative trait loci (QTLs) with epistatic effects. The method can map QTLs in complicated mating designs derived from the cross of two inbred lines. In addition to mapping QTLs for quantitative traits, the proposed method can even map genes underlying binary traits such as disease susceptibility using the threshold model. The parameters of interest are various QTL effects, including additive, dominance and epistatic effects of QTLs, the locations of identified QTLs and even the number of QTLs. When the number of QTLs is treated as an unknown parameter, the dimension of the model becomes a variable. This requires the reversible jump Markov chain Monte Carlo algorithm. The utility of the proposed method is demonstrated through analysis of simulation data. 相似文献
14.
Mapping quantitative trait loci with censored observations 总被引:2,自引:0,他引:2
The existing statistical methods for mapping quantitative trait loci (QTL) assume that the phenotype follows a normal distribution and is fully observed. These assumptions may not be satisfied when the phenotype pertains to the survival time or failure time, which has a skewed distribution and is usually subject to censoring due to random loss of follow-up or limited duration of the experiment. In this article, we propose an interval-mapping approach for censored failure time phenotypes. We formulate the effects of QTL on the failure time through parametric proportional hazards models and develop efficient likelihood-based inference procedures. In addition, we show how to assess genome-wide statistical significance. The performance of the proposed methods is evaluated through extensive simulation studies. An application to a mouse cross is provided. 相似文献
15.
J. König D. Perovic D. Kopahnke F. Ordon 《Molecular breeding : new strategies in plant improvement》2013,32(3):641-650
Breeding for resistance against Pyrenophora teres f. teres in barley is difficult due to the high virulence diversity of the pathogen and the fact that in field trials a simultaneous infection with Rhynchosporium commune, Puccinia hordei or Blumeria graminis f. sp. hordei often takes place. To avoid this, a so-called “summer hill trial” was developed in which winter barley is sown at the beginning of August at optimum conditions for P. teres infection. These trials allowed an unequivocal scoring of P. teres resistance. Using this approach, strong correlations of the results obtained in 3 years at two locations were observed and heritability was estimated at h 2 = 0.80 for the doubled haploid (DH) population Uschi × HHOR3073 and h 2 = 0.62 for (Post × Viresa) × HHOR9484. In parallel, genetic maps based on DArT, SSR and SNP markers were constructed, comprising 705.7 cM for the DH population Uschi × HHOR3073 and 1,035.8 cM for (Post × Viresa) × HHOR9484. In the population Uschi × HHOR3073, one quantitative trait locus (QTL) was detected on each of chromosomes 2H and 3H and two on chromosome 5H, explaining between 9.4 and 19.0 % of the phenotypic variance. In the population (Post × Viresa) × HHOR9484, three QTL were detected on chromosome 5H and one on chromosome 7H, explaining between 12.6 and 34.7 % of the phenotypic variance. These results show that the new summer hill trial design is best suited to obtain reliable phenotypic data for P. teres resistance under field conditions, as on the one hand already known QTL were confirmed and on the other hand new QTL were detected. 相似文献
16.
Zhu X Wang H Guo J Wu Z Cao A Bie T Nie M You FM Cheng Z Xiao J Liu Y Cheng S Chen P Wang X 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,124(1):177-188
Wheat yellow mosaic (WYM) caused by wheat yellow mosaic bymovirus (WYMV) has been growing as one of the most serious diseases affecting wheat production in China. In this study, the association of quantitative trait loci (QTLs) governing WYMV resistance with molecular markers was established using 164 recombinant inbred lines (RILs) derived from 'Xifeng Wheat' (highly resistant)?×?'Zhen 9523' (highly susceptible). Phenotypic data of WYMV resistance of the RILs were collected from 4-year, two-location replicated field trials. A molecular marker-based linkage map, which was comprised of 273 non-redundant loci and represented all the 21 wheat chromosomes, was constructed with the JoinMap 4.0 software. Using the Windows QTL Cartographer V2.5 software, three QTLs associated with WYMV resistance, QYm.njau-3B.1, QYm.njau-5A.1 and QYm.njau-7B.1, were detected on chromosomes 3BS, 5AL, and 7BS, respectively. The favorable allele effects were all contributed by 'Xifeng Wheat'. Among the three QTLs, QYm.njau-3B.1 and QYm.njau-5A.1 were detected in all the four trials and the overall mean, and could explain 3.3-10.2% and 25.9-53.7% of the phenotypic variation, respectively, while QYm.njau-7B.1 was detected in one trial and the overall mean and explained 4.9 and 3.3% of the phenotypic variation, respectively. A large portion of the variability for WYMV response was explained by a major QTL, QYm.njau-5A.1. The relationship of the molecular markers linked with QYm.njau-5A.1 and the WYMV resistance was further validated using a secondary F(2) population. The results showed that three markers, i.e., Xwmc415.1, CINAU152, and CINAU153, were closely linked to QYm.njau-5A.1 with the genetic distances of 0.0, 0.0, and 0.1?cM, respectively, indicating they should be useful in marker-assisted selection (MAS) wheat breeding for WYMV resistance. A panel of germplasm collection consisting of 46 wheat varieties with known WYMV response phenotypes was further used to validate the presence and effects of QYm.njau-5A.1 and the above three markers. It was found that QYm.njau-5A.1 was present in 12 of the 34 WYMV-resistant varieties. 相似文献
17.
Inoculation with barley net blotch from infested straw debris was compared with that from diseased plants after sowing infected grains. The straw debris had a high, uniform inoculation potential which gave an early, continuing infection and easily reproducible results that were effective for screening barley cultivars in the field for resistance against a natural population of the pathogen. Further, it minimises an eventual influence from other leaf pathogens coming from the surroundings. Irrigation was decisive for the success of the method - especially in the initial phase. Ten m separation with an immune crop was insufficient to completely prevent infection in the uninoculated plots. The tested 25 cvs were differentiated in six categories of resistant and susceptible on the basis of disease development and final level of attack. None of them was free of symptoms. The most resistant cvs kept a constant, low level of attack during the whole growing season, whereas the most susceptible cvs showed an early and rapidly increasing attack. Intermediate cvs were characterised with more or less slow increase of the attack. The size and proportion of the brown necrotic spots and the surrounding yellow halo varied greatly from one cultivar to the other. The grain yield reduction was due solely to an effect on the thousand grain weight which decreased linearly with the squared point score for net blotch. Further, the disease affected the quality of the grains as less nitrogen was transported from straw to grain in the severely diseased plants. 相似文献
18.
Association mapping of spot blotch resistance in wild barley 总被引:1,自引:0,他引:1
Joy K. Roy Kevin P. Smith Gary J. Muehlbauer Shiaoman Chao Timothy J. Close Brian J. Steffenson 《Molecular breeding : new strategies in plant improvement》2010,26(2):243-256
Spot blotch, caused by Cochliobolus sativus, is an important foliar disease of barley. The disease has been controlled for over 40 years through the deployment of cultivars with durable resistance derived from the line NDB112. Pathotypes of C. sativus with virulence for the NDB112 resistance have been detected in Canada; thus, many commercial cultivars are vulnerable to spot blotch epidemics. To increase the diversity of spot blotch resistance in cultivated barley, we evaluated 318 diverse wild barley accessions comprising the Wild Barley Diversity Collection (WBDC) for reaction to C. sativus at the seedling stage and utilized an association mapping (AM) approach to identify and map resistance loci. A high frequency of resistance was found in the WBDC as 95% (302/318) of the accessions exhibited low infection responses. The WBDC was genotyped with 558 Diversity Array Technology (DArT®) and 2,878 single nucleotide polymorphism (SNP) markers and subjected to structure analysis before running the AM procedure. Thirteen QTL for spot blotch resistance were identified with DArT and SNP markers. These QTL were found on chromosomes 1H, 2H, 3H, 5H, and 7H and explained from 2.3 to 3.9% of the phenotypic variance. Nearly half of the identified QTL mapped to chromosome bins where spot blotch resistance loci were previously reported, offering some validation for the AM approach. The other QTL mapped to unique genomic regions and may represent new spot blotch resistance loci. This study demonstrates that AM is an effective technique for identifying and mapping QTL for disease resistance in a wild crop progenitor. 相似文献
19.
E. S. Jones C. J. Liu M. D. Gale C. T. Hash J. R. Witcombe 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(3):448-456
Quantitative trait loci (QTLs) for resistance to pathogen populations of Scelerospora graminicola from India, Nigeria, Niger and Senegal were mapped using a resistant x susceptible pearl millet cross. An RFLP map constructed using F2 plants was used to map QTLs for traits scored on F4 families. QTL analysis was carried out using the interval mapping programme Mapmaker/QTL. Independent inheritance of resistance to pathogen populations from India, Senegal, and populations from Niger and Nigeria was shown. These results demonstrate the existence of differing virulences in the pathogen populations from within Africa and between Africa and India. QTLs of large effect, contributing towards a large porportion of the variation in resistance, were consistently detected in repeated screens. QTLs of smaller and more variable effect were also detected. There was no QTLs that were effective against all four pathogen populations, demonstrating that pathotype-specific resistance is a major mechanism of downy mildew resistance in this cross. For all but one of the QTLs, resistance was inherited from the resistant parent and the inheritance of resistance tended to be the result of dominance or over-dominance. The implications of this research for pearl millet breeding are discussed. 相似文献
20.
Jesse D. Munkvold James Tanaka David Benscher Mark E. Sorrells 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,119(7):1223-1235
The premature germination of seeds before harvest, known as preharvest sprouting (PHS), is a serious problem in all wheat growing regions of the world. In order to determine genetic control of PHS resistance in white wheat from the relatively uncharacterized North American germplasm, a doubled haploid population consisting of 209 lines from a cross between the PHS resistant variety Cayuga and the PHS susceptible variety Caledonia was used for QTL mapping. A total of 16 environments were used to detect 15 different PHS QTL including a major QTL, QPhs.cnl-2B.1, that was significant in all environments tested and explained from 5 to 31% of the trait variation in a given environment. Three other QTL QPhs.cnl-2D.1, QPhs.cnl-3D.1, and QPhs.cnl-6D.1 were detected in six, four, and ten environments, respectively. The potentially related traits of heading date (HD), plant height (HT), seed dormancy (DOR), and rate of germination (ROG) were also recorded in a limited number of environments. HD was found to be significantly negatively correlated with PHS score in most environments, likely due to a major HD QTL, QHd.cnl-2B.1, found to be tightly linked to the PHS QTL QPhs.cnl-2B.1. Using greenhouse grown material no overlap was found between seed dormancy and the four most consistent PHS QTL, suggesting that greenhouse environments are not representative of field environments. This study provides valuable information for marker-assisted breeding for PHS resistance, future haplotyping studies, and research into seed dormancy. 相似文献