首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
4-Hydroxynonenal (HNE) is one of the most abundant aldehyde components of ox-LDL and it exerts various effects on intracellular and extracellular signaling cascades. In this mini-review, a brief synopsis of HNE-modulated signaling pathways will be presented mainly focused on cell death, including recent studies from our laboratory. The results of a number of studies demonstrate the ability of HNE to induce apoptosis and ROS formation in a dose-dependent manner. Several signaling pathways have been shown to be modulated by HNE, including MAP kinases, PKC isoforms, cell-cycle regulators, receptor tyrosine kinases and caspases. In order to get insight into the mechanisms of apoptotic response by HNE, MAP kinase and caspase activation pathways have been studied in 3T3 fibroblasts; HNE induced early activation of JNK and p38 proteins but down-regulated the basal activity of ERK-1/2. We have shown that HNE-induced release of cytochrome c from mitochondria, caspase-9 and caspase-3 activation. Activation of AP-1 along with increased c-Jun and phospho-c-Jun levels could be inhibited by pretreatment of cells with certain molecules such as resveratrol. Additionally, overexpression of dominant negative c-Jun and JNK1 in 3T3 fibroblasts prevented HNE-induced apoptosis, which indicated a role for JNK-c-Jun/AP-1 pathway. JNK-dependent induction of c-Jun/AP-1 activation data in the literature indicates a critical potential role for JNK in the cellular response against toxic products of lipid peroxidation.  相似文献   

2.
In addition to the induction of cell proliferation and migration, bradykinin (BK) can increase c-fos mRNA expression, activate ERK 1/2 and generate reactive oxygen species (ROS) in vascular smooth muscle cells (VSMC). It is not known, however, whether BK can induce cellular proliferation and extracellular matrix production via redox-sensitive signaling pathways. We investigated the role(s) of ROS in proliferation, migration and collagen synthesis induced by BK in VSMC derived from Sprague Dawley rat aorta. BK (10 nM) increased VSMC proliferation by 30% (n=5); this proliferation was inhibited by the antioxidants N-acetylcysteine (20 mM) and alpha-lipoic acid (LA, 250 mM). In addition, BK induced an increase in cell migration and in collagen levels that were blocked by LA. ROS production induced by BK (n=10) was significantly inhibited by bisindolylmaleimide (4microM) and by PD98059 (40microM). These results suggest that: 1) ROS participate in the mechanism(s) used by bradykinin to induce cellular proliferation; 2) bradykinin induces ROS generation through a pathway that involves the kinases PKC and MEK; and 3) ROS participate in the pathways mediating cell migration and the production of collagen as a response to treatment with bradykinin. To our knowledge, this is the first report describing mechanisms to explain the participation of ROS in the cellular proliferation and extracellular matrix pathway regulated by BK.  相似文献   

3.
Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide translocase), thereby providing a negative feedback loop. The mechanism of activation and the conditions necessary to induce uncoupling by HNE are unclear. We have found that activation of proton leak by HNE in rat and mouse skeletal muscle mitochondria is dependent on incubation with respiratory substrate. In the presence of HNE, mitochondria energized with succinate became progressively more leaky to protons over time compared with mitochondria in the absence of either HNE or succinate. Energized mitochondria must attain a high membrane potential to allow HNE to activate uncoupling: a drop of 10-20 mV from the resting value is sufficient to blunt induction of proton leak by HNE. Uncoupling occurs through UCP3 (11%), ANT (64%) and other pathways (25%). Our findings have shown that exogenous HNE only activates uncoupling at high membrane potential. These results suggest that both endogenous HNE production and high membrane potential are required before mild uncoupling will be triggered to attenuate mitochondrial ROS production.  相似文献   

4.
5.
4-Hydroxynonenal (HNE) has been demonstrated to exert its antiproliferative effect by up-regulating the c-Jun-N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family (MAPKs). Transforming growth factor-beta1 (TGF-beta1) is the major negative regulatory factor in controlling cell proliferation, and Smads are its intracellular transducers. Recent data on human colon adenocarcinoma has shown a low HNE content paralleled by a marked alteration of TGF-beta1 levels within the tumor mass. The two events appear related because of the demonstrated marked ability of HNE to up-regulate expression and synthesis of TGF-beta1; the combined decreases of HNE and TGF-beta1 found in cancer cells provide a favorable condition for neoplastic progression. Furthermore, HNE is likely able to interact with the cytokine to enhance apoptosis and increase intracellular reactive oxygen species (ROS) formation in the CaCo-2 colon carcinoma cell line. The probable mechanism whereby HNE and TGF-beta1 interact to induce apoptosis is through cross-talk between the main signaling pathways of the two molecules (JNK and Smads), and the observed ROS production might only contribute to amplifying the apoptotic pathways. The network between the two signaling pathways here involved is now under investigation.  相似文献   

6.
4-Hydroxynonenal (HNE) accumulates at atherosclerotic lesions, but its role in the progression of atherosclerosis is not clear. Considering the role of matrix metalloproteinases (MMP) in plaque destabilization, we investigated the mechanism by which HNE induces MMP production in vascular smooth muscle cells (VSMC). VSMC stimulated by HNE (1.0 microM) produced enzymatically active MMP-2 with an increased promoter activity, which was abolished by mutation of the NF-kappaB binding site in the promoter region. The increased NF-kappaB activity with subsequent MMP-2 production by HNE was significantly attenuated by transfection with Akt siRNA as well as by pretreatment with the PI3K/Akt inhibitors LY294002 (10 microM) and SH-5 (1.0 microM). The phosphorylation of Akt occurred as early as 5 min in VSMC exposed to HNE and was markedly attenuated by inhibition of mitochondrial reactive oxygen species (ROS). Furthermore, the impact of mitochondrial ROS on HNE-induced Akt phosphorylation with subsequent MMP-2 production was also demonstrated in mitochondrial function-deficient VSMC, as well as in cells transfected with manganese superoxide dismutase. Taken together, these results suggest that HNE enhances MMP-2 production in VSMC via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways.  相似文献   

7.
8.
Nedaplatin, a cisplatin analog, was developed to reduce the toxicity of cisplatin, whereas it can be cross-resistant with cisplatin in some circumstances. This study aimed to investigate the role of autophagy in nedaplatin induced cell death in cisplatin-resistant nasopharyngeal carcinoma cells. Here, we showed that HNE1/DDP and CNE2/DDP cells were resistant to nedaplatin-induced cell death with reduced apoptotic activity. Nedaplatin treatment resulted in autophagosome accumulation and increased expression of LC3-II, indicating the induction of autophagy by nedaplatin in HNE1/DDP and CNE2/DDP cells. Inhibition of autophagy by Bafilomycin A1 (Baf A1) and 3-Methyladenine (3-MA) remarkably enhanced the antitumor efficacy of nedaplatin in HNE1/DDP and CNE2/DDP cells, suggesting that the resistance to nedaplatin-induced cell death was caused by enhanced autophagy in nedaplatin-resistant NPC cells. Additionally, Baf A1 enhanced reactive oxygen species (ROS) generation and apoptosis induced by nedaplatin in HNE1/DDP cells. Mechanistically, nedaplatin treatment caused activation of ERK1/2 and suppression of Akt/mTOR signaling pathways. While inhibition of ERK1/2 by MEK1/2 inhibitor, U0126, could reduce the expression of LC3-II in nedaplatin-resistant NPC cells. Furthermore, suppression of ROS could inhibit nedaplatin-induced ERK activation in HNE1/DDP cells, indicating that ROS and ERK were involved in nedaplatin-induced autophagy. Together, these findings suggested that autophagy played a cytoprotective role in nedaplatin-induced cytotoxicity of HNE1/DDP and CNE2/DDP cells. Furthermore, our results highlighted a potential approach to restore the sensitivity of cisplatin-resistant nasopharyngeal cancer cells to nedaplatin in combination with autophagy inhibitors.  相似文献   

9.
Arsenic is a widespread environmental toxic agent that has been shown to cause diverse tissue and cell damage and at the same time to be an effective anti-cancer therapeutic agent. The objective of this study is to explore the signaling mechanisms involved in arsenic toxicity. We show that the IkappaB kinase beta (IKKbeta) plays a crucial role in protecting cells from arsenic toxicity. Ikkbeta(-)(/)(-) mouse 3T3 fibroblasts have decreased expression of antioxidant genes, such as metallothionein 1 (Mt1). In contrast to wild type and IKKbeta-reconstituted Ikkbeta(-)(/)(-) cells, IKKbeta-null cells display a marked increase in arsenic-induced reactive oxygen species (ROS) accumulation, which leads to activation of the MKK4-c-Jun NH(2)-terminal kinase (JNK) pathway, c-Jun phosphorylation, and apoptosis. Pretreatment with the antioxidant N-acetylcysteine (NAC) and expression of MT1 in the Ikkbeta(-)(/)(-) cells prevented JNK activation; moreover, NAC pretreatment, MT1 expression, MKK4 ablation, and JNK inhibition all protected cells from death induced by arsenic. Our data show that two signaling pathways appear to be important for modulating arsenic toxicity. First, the IKK-NF-kappaB pathway is crucial for maintaining cellular metallothionein-1 levels to counteract ROS accumulation, and second, when this pathway fails, excessive ROS leads to activation of the MKK4-JNK pathway, resulting in apoptosis.  相似文献   

10.
11.
Oxygen free radicals have a major impact on senescence of primary human cells. In replicative senescence, which is induced by uncapping of telomeres, the rate of telomere shortening is largely determined by telomere-specific accumulation of DNA damage induced by reactive oxygen species (ROS). More intense ROS-generating stressors can induce premature senescence via generation of telomere-independent DNA damage. Interestingly, ROS levels were also elevated when premature senescence was triggered by pathways downstream or independent of DNA damage. This has led to the suggestion that ROS generation could be a specific component of the signalling pathways inducing senescence. However, the available data are compatible with the concept that senescence is triggered as a DNA damage response. ROS appear to be involved as inducers of DNA damage rather than as specific signalling molecules. The upregulation of ROS production often seen in premature senescence might be related to retrograde response initiated by mitochondria.  相似文献   

12.
13.
14.
Lanthanides (Ln) were known to induce cell apoptosis, which might be the results of their effects on mitochondria (MT). This study was trying to clarify the role of MT and reactive oxygen species (ROS) in Ln-induced apoptosis. We found that micromolar or lower concentration of La(3+), Gd(3+) and Yb(3+) bound to MT and induced swelling of isolated MT; EGTA treatment can inhibit the process. In addition, La(3+), Gd(3+) and Yb(3+) increased the MT membrane fluidity and decreased the MT membrane potential (DeltaPsi(m)). All these were inferred to the results of MT permeability transition pore opening. Release of cytochrome c (Cyt-c) from the MT upon incubation with Ln ions was monitored by immunocytochemistry, however, Cyt-c release was observed only in the cytosol of cells. In parallel with these events, there was a higher level of ROS found in the cells exposed to Ln. It was proposed that Ln-induced apoptosis via the MT pathways and it was highly possible that ROS were involved in the mechanism.  相似文献   

15.
16.
The normal microbial occupants of the mammalian intestine are crucial for maintaining gut homeostasis, yet the mechanisms by which intestinal cells perceive and respond to the microbiota are largely unknown. Intestinal epithelial contact with commensal bacteria and/or their products has been shown to activate noninflammatory signaling pathways, such as extracellular signal-related kinase (ERK), thus influencing homeostatic processes. We previously demonstrated that commensal bacteria stimulate ERK pathway activity via interaction with formyl peptide receptors (FPRs). In the current study, we expand on these findings and show that commensal bacteria initiate ERK signaling through rapid FPR-dependent reactive oxygen species (ROS) generation and subsequent modulation of MAP kinase phosphatase redox status. ROS generation induced by the commensal bacteria Lactobacillus rhamnosus GG and the FPR peptide ligand, N-formyl-Met-Leu-Phe, was abolished in the presence of selective inhibitors for G protein-coupled signaling and FPR ligand interaction. In addition, pretreatment of cells with inhibitors of ROS generation attenuated commensal bacteria-induced ERK signaling, indicating that ROS generation is required for ERK pathway activation. Bacterial colonization also led to oxidative inactivation of the redox-sensitive and ERK-specific phosphatase, DUSP3/VHR, and consequent stimulation of ERK pathway signaling. Together, these data demonstrate that commensal bacteria and their products activate ROS signaling in an FPR-dependent manner and define a mechanism by which cellular ROS influences the ERK pathway through a redox-sensitive regulatory circuit.  相似文献   

17.
18.
The cellular basis for diverse responses to oxygen   总被引:10,自引:0,他引:10  
  相似文献   

19.
In Arabidopsis thaliana suspension cells, ABA was previously shown to promote the activation of anion channels and the reduction of proton pumping that both contribute to the plasma membrane depolarization. These two ABA responses were shown to induce two successive [Ca(2+)](cyt) spikes. As reactive oxygen species (ROS) have emerged as components of ABA signaling pathways especially by promoting [Ca(2+)](cyt) variations, we studied whether ROS were involved in the regulation of anion channels and proton pumps activities. Here we demonstrated that ABA induced ROS production which triggered the second of the two [Ca(2+)](cyt) increases observed in response to ABA. Blocking ROS generation using diphenyleneiodonium (DPI) impaired the proton pumping reduction, the anion channel activation and the RD29A gene expression in response to ABA. Furthermore, H(2)O(2) was shown to activate anion channels and to inhibit plasma membrane proton pumping, as did ABA. However, ROS partially mimicked ABA's effects since H(2)O(2) treatment elicited anion channel activation but not the subsequent expression of the RD29A gene as did ABA. This suggests that expression of the RD29A gene in response to ABA results from the activation of multiple concomitant signaling pathways: blocking of one of them would impair gene expression whereas stimulating only one would not. We conclude that ROS are a central messenger of ABA in the signaling pathways leading to the plasma membrane depolarization induced by ABA.  相似文献   

20.
Previously, we reported that the expression of zinc-finger protein 143 (ZNF143) was induced by insulin-like growth factor-1 (IGF-1) via reactive oxygen species (ROS)- and phosphatidylinositide-3-kinase (PI3-kinase)-linked pathways in colon cancer cells. Here, we investigated whether GAIP-interacting protein, C-terminus (GIPC), a binding partner of IGF-1R, is involved in ZNF143 expression through IGF-1 and IGF-1R signaling in colon cancer cells. The knockdown of GIPC in colon cancer cells reduced ZNF143 expression in response to IGF-1. IGF-1 signaling through its receptor, leading to the phosphorylation and activation of the PI3-kinase-Akt pathway and mitogenactivated protein kinases (MAPKs) was unaffected by the knockdown of GIPC, indicating the independence of the GIPC-linked pathway from PI3-kinase- and MAPK-linked signaling in IGF-1-induced ZNF143 expression. In accordance with previous results in breast cancer cells (Choi et al., 2010), the knockdown of GIPC reduced ROS production in response to IGF-1 in colon cancer cells. Furthermore, the knockdown of GIPC reduced the expression of Rad51, which is regulated by ZNF143, in response to IGF-1 in colon cancer cells. Taken together, these data suggest that GIPC is involved in IGF-1 signaling leading to ZNF143 expression through the regulation of ROS production, which may play a role for colon cancer tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号