首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The puroindoline genes (Pina and Pinb) are the functional components of the common or bread wheat (Triticum aestivum L.) grain hardness locus that are responsible for kernel texture. In this study, four puroindoline b-2 variants were physically mapped using nulli-tetrosomic lines of bread wheat cultivar Chinese Spring and substitution lines of durum wheat (Triticum turgidum L.) cultivar Langdon. Results indicated that Pinb-2v1 was on 7D of Chinese Spring, Pinb-2v2 on 7B of Chinese Spring, Pinb-2v3 on 7B of Chinese Spring and Langdon, and Pinb-2v4 on 7A of Chinese Spring and Langdon. A new puroindoline b-2 variant, designated Pinb-2v5, was identified at the puroindoline b-2 locus of durum wheat cultivar Langdon, with a difference of only five single nucelotide polymorphisms compared with Pinb-2v4. Sequencing results indicated that, in comparison with the Pinb-2v3 sequence (AM99733 and GQ496618 with one base-pair modification of G to T at 6th position, designated Pinb-2v3a) in bread wheat cultivar Witchta, the coding region of Pinb-2v3 in 12 durum wheat cultivars had a single nucleotide change from T to C at the 311th position, resulting in a corresponding amino acid change from valine to alanine at the 104th position. This new allele was designated Pinb-2v3b. The study of puroindoline b-2 gene polymorphism in CIMMYT and Italian durum wheat germplasm and discovery of a novel puroindoline b-2 variant could provide useful information for further understanding the molecular and genetic basis of kernel hardness and illustrating gene duplication events in wheat.  相似文献   

2.
Durum wheat is the second-most widely grown wheat species, and is primarily used in the production of pasta and couscous. The grain utilization of durum wheat is partly related to its very hard kernel texture because of the lack of the D genome and consequentially the Puroindoline genes. Our previous study reported the transformation of durum wheat with the Puroindoline a (Pina) gene. Here, we characterized the transgenic durum wheat lines expressing the Pina gene, and studied the effects of PINA on grain texture and other kernel characteristics. SDS-PAGE and Western blotting results demonstrated that starch-bound PINA levels of Pina-overexpressing lines were lower than that of Pina-positive control, common wheat cv. Chinese Spring, suggesting a weak association of PINA protein with starch granules in the absence of Pinb. Grain hardness analysis and flour milling tests indicated that the overexpression of PINA resulted in decreased grain hardness and increased flour yield in transgenic durum wheat lines. The agronomic performance of the transgenic and control lines was also examined and it was found that no significant differences in measured traits were observed between Pina-overexpressing and control lines in the 2-year field trials. Since grain hardness strongly affects milling and end-use qualities, the development of medium–hard-textured durum wheat lines is not only of significance for our knowledge of grain hardness and Puroindolines, but also has practical implications for plant breeders and food technologists for the expansion of utilization of durum wheat.  相似文献   

3.
Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat.  相似文献   

4.
A microarray analysis of wheat grain hardness   总被引:7,自引:0,他引:7  
Grain hardness is an important quality characteristic of wheat grain, and considerable research effort has focused on characterising the genetic and biochemical basis underlying the hardness phenotype. Previous research has shown that the predominant difference between hard and soft seeds is linked to the puroindoline (PIN) proteins. In this study the near-isogenic lines of Heron and Falcon, which differ only in the grain hardness character, were compared using a cDNA microarray consisting of approximately 5,000 unique cDNA clones that were isolated from wheat and barley endosperm tissue. Our analysis showed that major differences in gene expression were evident for puroindoline-a (Pina), with a minor but not consistent change in the expression of puroindoline-b (Pinb). These observations were confirmed using a 16,000 unique cDNA microarray in a comparison of hard wheats with either the Pina null or Pinb mutation.  相似文献   

5.
In this study, we identify the allelic variation of the Pinb-B2v3 variant, which could be divided into three different alleles, Pinb-B2v3a, Pinb-B2v3b and Pinb-B2v3c. The result of χ2 tests showed that the distribution of Puroindoline b-2 variants has different frequencies in common and durum wheats. Analysis of the association of Pinb-B2v with grain hardness indicated that wheat cultivars with Pinb-B2v3b possessed relatively higher single kernel characterization system (SKCS) hardness indices in soft wheat in the 2006–2007 cropping season. Further analysis of SKCS hardness among different Puroindoline B-b2 variants by an F8 recombinant inbred line (RIL) population containing 350 RILs indicated that lines with Pinb-2v3b were on average 5.4 SKCS hardness index units harder than those carrying the Pinb-2v2 haplotype. Derived cleaved amplified polymorphic sequence markers were developed for identification of Pinb-B2v3b and Pinb-B2v3c alleles and will be useful for screening early generation materials by marker-assisted selection during wheat breeding. The results of quantitative real-time PCR indicated that the relative expression level of Pinb-B2v3b was significantly higher than those of Pinb-B2v2, Pinb-B2v3a and Pinb-B2v3c, that four Pinb-B2 alleles showed the highest relative expression level on the 14th day after anthesis during grain development, and that relative expression levels of Pinb-B2v3b and Pinb-B2v2 in leaf were significantly higher than those in root, suggesting that PINB-2 are possibly not seed-specific proteins and that the expression level of Pinb-B2v3 was possibly positively correlated with grain hardness.  相似文献   

6.
Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression.  相似文献   

7.
Kernel hardness that is conditioned by puroindoline genes has a profound effect on milling, baking and end-use quality of bread wheat. In this study, 219 landraces and 166 historical cultivars from China and 12 introduced wheats were investigated for their kernel hardness and puroindoline alleles, using molecular and biochemical markers. The results indicated that frequencies of soft, mixed and hard genotypes were 42.7, 24.3, and 33.0%, respectively, in Chinese landraces and 45.2, 13.9, and 40.9% in historical cultivars. The frequencies of PINA null, Pinb-D1b and Pinb-D1p genotypes were 43.8, 12.3, and 39.7%, respectively, in hard wheat of landraces, while 48.5, 36.8, and 14.7%, respectively, in historical hard wheats. A new Pinb-D1 allele, designated Pinb-D1t, was identified in two landraces, Guangtouxianmai and Hongmai from the Guizhou province, with the characterization of a glycine to arginine substitution at position 47 in the coding region of Pinb gene. Surprisingly, a new Pina-D1 allele, designated Pina-D1m, was detected in the landrace Hongheshang, from the Jiangsu province, with the characterization of a proline to serine substitution at position 35 in the coding region of Pina gene; it was the first novel mutation found in bread wheat, resulting in a hard endosperm with PINA expression. Among the PINA null genotypes, an allele designed as Pina-D1l, was detected in five landraces with a cytosine deletion at position 265 in Pina locus; while another novel Pina-D1 allele, designed as Pina-D1n, was identified in six landraces, with the characterization of an amino acid change from tryptophan-43 to a ‘stop’ codon in the coding region of Pina gene. The study of puroindoline polymorphism in Chinese wheat germplasm could provide useful information for the further understanding of the molecular basis of kernel hardness in bread wheat.  相似文献   

8.
Wheat has a vital position in agriculture because it is a staple food for masses and variation in grain hardness governs its applications. Soft wheats have softer endosperm texture that mills easily, so needs less energy to mill, produces smaller particles, and small amount of starch is damaged after milling as compared to hard wheat. Soft texture results from higher level of friabilin whereas hard texture results from low level of friabilin on starch granule surface. Friabilin, a marker of kernel texture is primarily composed of Puroindolines (PINs) and its genes (Pins) are located on the Hardness (Ha) locus. The Pins are the molecular-genetic basis of kernel softness in wheat. When both Pins are in their ‘wild state’ (Pina-D1a and Pinb-D1a), wheat kernel is soft. Absence or mutation in one of the Pins results in hard grain texture with different effects on end use and milling qualities. Pina-D1b genotypes gave harder grain texture, higher protein content, water absorption of flour, damaged starch granules and greater flour yield than hard wheat. Recently, other Pins like genes, Pin b variant genes located on the long arm of chromosome 7A were reported in bread wheat with more than 70% similarity to Pinb (Pinb-D1a) at the DNA level. Other genes located on chromosomes 1A, 2A, 5A, 7A, 5B, 2D and 6D also affect kernel texture. However the main determinants are the variants in the allelic diversity of Puroindoline family genes. Contemporary studies show that Pins are multifunctional family of genes having a range of functions from grain hardness to natural defense against insects and pathogens such as viruses, bacteria and fungi.  相似文献   

9.
Puroindoline a and b (Pina and Pinb), together make up the functional components of the wheat grain hardness locus (Ha) and have antimicrobial properties. The antifungal activity of puroindoline proteins, PINA and PINB, has been demonstrated in vitro and in vivo. In this study, Pina and Pinb were introduced into corn under the control of a corn Ubiquitin promoter. Two Pina/Pinb expression–positive transgenic events were evaluated for resistance to Cochliobolus heterostrophus, the corn southern leaf blight (SLB) pathogen. Transgenic corn expressing Pins showed significantly increased tolerance to C. heterostrophus, averaging 42.1% reduction in symptoms. Pins are effective in vivo as antifungal proteins and could be valuable tools in corn SLB control.  相似文献   

10.
Kernel hardness is one of the most important factors determining the milling and processing quality of bread wheat (Triticum aestivum L.). In the present study, 267 wheat cultivars and advanced lines from the Yellow and Huai Valley of China, CIMMYT, Russia and Ukraine were used for identification of SKCS (Single Kernel Characterization System) hardness and puroindoline alleles. Results indicated that Pinb-D1b is the most popular genotype in wheat cultivars from the Yellow and Huai Valley, Russia and Ukraine, whereas PINA null is a predominant genotype in wheat cultivars and advanced lines from CIMMYT. Molecular characterization of PINA-null alleles indicated that one Chinese landrace Chiyacao had the allele Pina-D1l with a single nucleotide C deletion at position 265 in Pina coding region based on sequencing results, and 35 of 39 PINA-null alleles belonged to Pina-D1b according to PCR amplification with the sequence-tagged site (STS) marker Pina-N developed previously. The remaining three cultivars (Jiangdongmen, Heshangtou and Hongquanmang from China) with PINA-null alleles were characterized at the DNA level by a primer walking strategy, and the results showed that all three cultivars with PINA-null alleles possessed a uniform 10,415-bp deletion from −5,117 bp to +5,298 bp (ATG codon references zero), designated as Pina-D1r. Correspondingly, an STS marker Pina-N2 with an expected fragment size of 436-bp spanning the 10,415-bp deletion was developed for detection of the Pina-D1r allele. This study provided a useful molecular marker for straightforward detection of one of the PINA-null alleles and would also be helpful to further understand the molecular and genetic basis of kernel hardness in bread wheat.  相似文献   

11.
Kernel texture is a major factor influencing the classification and end use properties of wheat (Triticum aestivum L.), and is mainly controlled by the Puroindoline a (Pina) and Puroindoline b (Pinb) genes. Recently, a new puroindoline gene, Puroindoline b-2 (Pin b-2), was identified. In this study, 388 wheat cultivars and advanced breeding lines from the U.S. Pacific Northwest were investigated for frequencies of Puroindoline D1 alleles and Pinb-2 variants 2 and 3. Results indicated that PinbD1b (74.0%) was the predominant genotype among hard wheats (N = 196), the only other hard allele encountered was Pina-D1b (26.0%). Across all varieties, Pinb-2v3 was the predominant genotype (84.5%) compared with Pinb-2v2 (15.5%). However, among 240 winter wheat varieties (124 soft white, 15 club, 68 hard red and 33 hard white varieties), all carried Pinb-2v3. Among spring wheats, Pinb-2v2 and Pinb-2v3 frequencies were more variable (soft white 25.0:75.0, hard red 58.2:41.8 and hard white 40.0:60.0, respectively). Kernel texture variation was analyzed using 247 of the 388 wheat varieties grown in multi-location factorial trials in up to 7 crop years. The range of variety means among the four groups, soft winter, soft spring, hard winter and hard spring, was on the order of 15–25 single kernel characterization system (SKCS) Hardness Index. The least significant difference for each of these trials ranged from 2.8 to 5.6 SKCS Hardness Index. Observations lead to the conclusion that Pinb-2 variants do not exert a prominent effect on kernel texture, however, Pinb2 variants do identify features of wheat germ plasm structure in the U.S. Pacific Northwest.  相似文献   

12.
The Wx gene encodes the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. Triticum urartu and einkorn (T. monococcum L. ssp. monococcum), which are related to the A genome of bread wheat, could be important sources of variation for this gene. This study evaluated the Wx gene variability in 52 accessions of these species and compared their nucleotide sequences with the Wx-A1a allele of bread wheat. The level of polymorphism found was high, although not distributed equally between the two species. Five different alleles were found in T. urartu, of which four were novel (Wx-A u 1b, -A u 1c, -A u 1d and -A u 1e). All einkorn accessions had the same allele, which was also novel and was named Wx-A m 1a. A comparison between the proteins deduced from the novel alleles and the Wx-A1a protein showed that there were up to 33 amino acid changes in both the transit peptide and the mature protein. These results showed that these species, especially T. urartu, are a potential source of novel waxy variants.  相似文献   

13.
The barley hordoindoline genes (Hina and Hinb) are homologous to the wheat puroindoline genes (Pina and Pinb). These genes are involved in grain hardness, which is an important quality for barley processing. We identified novel variants of Hina and Hinb in 10 wild Hordeum species (H. bogdanii, H. brachyantherum, H. bulbosum, H. chilense, H. comosum, H. marinum, H. murinum, H. patagonicum, H. pusillum, and H. roshevitzii) covering all Hordeum genomes and preliminarily named them Hinc. These nucleotide sequences were highly similar to those of Puroindoline b-2 variant genes (Pinb-2v) and were located on chromosome 7I in H. chilense. The Hinc genes in H. bogdanii, H. bulbosum, H. patagonicum, and H. roshevitzii were pseudogenes possessing in-frame stop codons. We also found a partial Hinc sequence in H. murinum. This gene was not found in cultivated barley and H. vulgare subsp. spontaneum. The phylogenetic tree of Gsp-1, Hin, and Pin genes demonstrates that Hinc and Pinb-2v genes formed one cluster. Therefore, we considered that Hinc and Pinb-2v genes shared a common ancestral gene and were homologous to each other. We also studied the evolutional process of Gsp-1, Hin, and Pin genes. Our results suggested that Gsp-1 might be the most closely related to a putative ancestral gene on Ha locus.  相似文献   

14.
The wild diploid wheat (Triticum urartu Thum. ex Gandil.) is a potential gene source for wheat breeding, as this species has been identified as the A-genome donor in polyploid wheats. One important wheat breeding trait is bread-making quality, which is associated in bread wheat (T. aestivum ssp. aestivum L. em. Thell.) with the high-molecular-weight glutenin subunits. In T. urartu, these proteins are encoded by the Glu-A1x and Glu-A1Ay genes at the Glu-A u 1 locus. The Glu-A1x genes of 12 Glu-A u 1 allelic variants previously detected in this species were analysed using PCR amplification and sequencing. Data showed wide diversity for the Glu-A1x alleles in T. urartu, which also showed clear differences to the bread wheat alleles. This variation could enlarge the high-quality genetic pool of modern wheat and be used to diversify the bread-making quality in durum (T. turgidum ssp. durum Desf. em. Husn.) and common wheat.  相似文献   

15.
The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurately assembly of its genome. To explore the utility of ancestral diploid species of polyploid wheat, sequence variation of T. urartu (AuAu) was analyzed by comparing its 277-kb large genomic region carrying the important Glu-1 locus with the homologous regions from the A genomes of the diploid T. monococcum (AmAm), tetraploid T. turgidum (AABB), and hexaploid T. aestivum (AABBDD). Our results revealed that in addition to a high degree of the gene collinearity, nested retroelement structures were also considerably conserved among the Au genome and the A genomes in polyploid wheats, suggesting that the majority of the repetitive sequences in the A genomes of polyploid wheats originated from the diploid Au genome. The difference in the compared region between Au and A is mainly caused by four differential TE insertion and two deletion events between these genomes. The estimated divergence time of A genomes calculated on nucleotide substitution rate in both shared TEs and collinear genes further supports the closer evolutionary relationship of A to Au than to Am. The structure conservation in the repetitive regions promoted us to develop repeat junction markers based on the Au sequence for mapping the A genome in hexaploid wheat. Eighty percent of these repeat junction markers were successfully mapped to the corresponding region in hexaploid wheat, suggesting that T. urartu could serve as a useful resource for developing molecular markers for genetic and breeding studies in hexaploid wheat.  相似文献   

16.
Suzuki G  Wada H  Goto H  Nakano A  Oba H  Deno T  Rahman S  Mukai Y 《Plant cell reports》2011,30(12):2293-2301
Grain hardness of wheat is determined by the hardness (Ha)-locus region, which contains three friabilin-related genes: puroindoline-a (Pina), puroindoline-b (Pinb) and GSP-1. In our previous study, we produced the transgenic rice plants harboring the large genomic fragment of the Ha-locus region of Aegilops tauschii containing Pina and GSP-1 genes by Agrobacterium-mediated transformation. To examine the effects of the transgenes in the rice endosperms, we firstly confirmed the homozygosity of the T-DNAs in four independent T2 lines by using fluorescence in situ hybridization (FISH) and DNA gel blot analyses. The transgenes, Pina and GSP-1, were stably expressed in endosperms of the T3 and T4 seeds at RNA and protein levels, indicating that the promoters and other regulatory elements on the wheat Ha-locus region function in rice, and that multigene transformation using a large genomic fragment is a useful strategy. The functional contribution of the transgene-derived friabilins to the rice endosperm structure was considered as an increase of spaces between compound starch granules, resulting in a high proportion of white turbidity seeds.  相似文献   

17.
Puroindolines, the tryptophan-rich proteins controlling grain hardness in wheat, appeared as two pairs of 13 kDa polypeptides in the Acid-PAGE (A-PAGE) and two-dimensional A-PAGE×SDS-PAGE patterns of starch-granule proteins from wild allotetraploid wheat Aegilops ventricosa Tausch. (2n = 4x = 28, genomes DvDvNvNv). Puroindoline pair a1 + a2 reacted strongly with an antiserum specific for puroindoline-a from common wheat (Triticum aestivum L.), whereas puroindoline pair b1 + b2 exhibited A-PAGE relative mobilities similar to that of puroindoline-b in Aegilops tauschii (Coss.), the D-genome donor to both common wheat and Ae. ventricosa. Puroindolines a2 and b1 were found to be encoded by alleles Pina-D1a and Pinb-D1h on chromosome 5Dv, respectively, whereas puroindolines a1 and b2 were assumed to be under the genetic control of chromosome 5Nv. Puroindoline a1 encoded by the novel Pina-N1a allele exhibited a high level of amino acid variation with respect to puroindoline-a. On the other hand, the tryptophan-rich region of puroindoline b2 encoded by allele Pinb-N1a showed a sequence change from lysine-42 to arginine, with no effect on the amount of protein b2 accumulated on the starch granules. A partial duplication of the pin-B gene (Pinb-relic) was identified about 1100 bp downstream from Pinb-D1 on chromosome 5Dv. The present findings are the first evidence of a tetraploid wheat species in which four puroindoline genes are expressed. The potential of Ae. ventricosa as a source of genes that may be used to modulate endosperm texture and other valuable traits in cultivated wheat species is discussed.  相似文献   

18.
Puroindolines: the molecular genetic basis of wheat grain hardness   总被引:44,自引:0,他引:44  
The variation in grain hardness is the single most important trait that determines end-use quality of wheat. Grain texture classification is based primarily on either the resistance of kernels to crushing or the particle size distribution of ground grain or flour. Recently, the molecular genetic basis of grain hardness has become known, and it is the focus of this review. The puroindoline proteins a and b form the molecular basis of wheat grain hardness or texture. When both puroindolines are in their `functional' wild state, grain texture is soft. When either one of the puroindolines is absent or altered by mutation, then the result is hard texture. In the case of durum wheat which lacks puroindolines, the texture is very hard. Puroindolines represent the molecular-genetic basis of the Hardness locus on chromosome 5DS and the soft (Ha) and hard (ha) alleles present in hexaploid bread wheat varieties. To date, seven discrete hardness alleles have been described for wheat. All involve puroindoline a or b and have been designated Pina-D1b and Pinb-D1b through Pinb-D1g. A direct role of a related protein, grain softness protein (as currently defined), in wheat grain texture has yet to be demonstrated.  相似文献   

19.
The starch granule proteins from 113 einkorn wheat (Triticum monococcum ssp monococcum) accessions were analyzed by acidic, polyacrylamide gel electrophoresis (A-PAGE), and two-dimensional A-PAGE x SDS-PAGE. All accessions were confirmed to contain equal amounts of two polypeptide chains corresponding to puroindoline B (Pin-B), as well as a prominent component plus a faint band corresponding to puroindoline A (Pin-A). When compared with soft-textured common wheat, “monococcum” accessions showed an increase of 3.2- and 2.7-fold in Pin-A and Pin-B levels on the starch granules, respectively. In addition, all accessions contained a novel component of the 2S super-family of seed proteins named Einkorn Trypsin Inhibitor (ETI), which was found to be encoded as a pre-protein 148 residues long. Wild-type ETI encoded by allele Eti-A m 1a and “valine-type” ETI encoded by allele Eti-A m 1b, which occurred in 107 and six einkorn accessions, respectively, were found to accumulate on starch granules as a mature protein of 121 amino acids with a hydrophobic central domain. The einkorn accessions exhibited an average SKCS index as low as −2.05 ± 11.4, which is typical of extra-soft kernels. The total surface area of starch granules in “monococcum” wheat, as determined by visual assessments in counting chambers, was estimated at 764 mm2/mg of starch, and was about 1.5 times higher than that for common wheat. The results are discussed in relation to the identification of factors that cause the extra-soft texture of einkorn kernels.  相似文献   

20.
Kernel hardness is an important agronomic trait that influences end-product properties. In wheat cultivars, this trait is determined by thePuroindoline a (Pina) andPuroindoline b (Pinb) genes, located in theHardness locus (Ha) on chromosome 5DS of the D genome. Wild type alleles code puroindoline a (PINA) and puroindoline b (PINB) proteins, which form a 15-kDa friabilin present on the surface of water-washed starch granules. Both the proteins are accumulated in the starch endosperm cells and aleurone of the mature kernels.Puroindoline-like genes coding puroindoline-like proteins in the starch endosperm occur in some of the genomes of Triticeae and Aveneae cereals. Orthologs are present in barley, rye and oats. However, some genomes of these diploid and polyploid cereals, like that ofTriticum turgidum var.durum (AABB) lack thepuroindoline genes, having a very hard kernel texture. The two wild type alleles in opposition (dominant loci) control the soft pheno-type. Mutation either inPina orPinb or in both leads to a medium-hard or hard kernel texture. The most frequent types ofPin mutations are point mutations within the coding sequence resulting in the substitution of a single amino acid or a null allele. The latter is the result of a frame shift determined by base deletion or insertion or a one-point mutation to the stop codon. The lipid-binding properties of the puroindolines affect not only the dough quality but also the plants’ resistance to pathogens. Genetic modification of cereals withPuroindoline genes and/or their promoters enable more detailed functional analyses and the production of plants with the desired characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号