首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Formation of the chordate body is accomplished by a complex set of morphogenetic movements including convergent extension of notochord cells. In the ascidian Ciona intestinalis, Brachyury plays a key role in the formation of the notochord, and more than 30 Bra-downstream notochord genes have been identified. In the present study, we examined the effects of functional suppression of nine Bra-downstream notochord genes, which include Ci-PTP, Ci-ACL, Ci-prickle, Ci-netrin, Ci-trop, Ci-Noto3, Ci-ASAK, Ci-ERM and Ci-pellino. When the function of the first two genes (Ci-PTP and Ci-ACL) was suppressed with specific morpholinos, the notochord cells failed to converge, while functional suppression of Ci-prickle resulted in a failure of intercalation, and therefore the cells in these three types of embryo remained in the mid-dorsal region of the embryo. Functional suppression of the next four genes (Ci-netrin, Ci-trop, Ci-Noto3 and Ci-ASAK) resulted in the partial defect of intercalation, and the notochord did not consist of a single row. In addition, when the function of the last two genes (Ci-ERM and Ci-pellino) was suppressed, notochord cells failed to elongate in the embryo, even though convergence/extension took place normally. These results indicate that many Bra-downstream notochord genes are involved in convergence/extension of the embryo.  相似文献   

2.
3.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

4.
The notochord has two major roles during chordate embryogenesis, as a source of inductive signals for the patterning of neural tube and paraxial mesoderm and as a supportive organ of the larval tail. Despite the recent identification of mutations that affect the notochord development in vertebrate embryos, little is known about genes that are expressed in the differentiating notochord itself. In the urochordate ascidian Ciona intestinalis, Brachyury (Ci-Bra) plays a key role in notochord differentiation. In a previous study, we isolated cDNA clones for nearly 40 potential Ci-Bra target genes that are expressed in notochord cells (H. Takahashi et al., 1999, Genes Dev. 13, 1519-1523). Here we characterized 20 of them by determining the complete nucleotide sequences of the cDNAs. These genes encode a broad spectrum of divergent proteins associated with notochord formation and function. Two genes encode ascidian homologs of the Drosophila Prickle LIM domain proteins and another encodes the ERM protein, all 3 of which appear to be involved in the control of cytoskeletal architecture. In addition, genes for netrin, leprecan, cdc45, ATP:citrate lyase, ATP sulfurylase/APS kinase, protein tyrosine phosphatase, beta4-galactosyltransferase, fibrinogen-like protein, divergent tropomyosin-like proteins, and Drosophila Pellino-like protein were identified. The observation of the netrin gene expression in the notochord may provide the first molecular evidence that the ascidian notochord is a source of signals as in vertebrates. In addition, the present information should be used to identify nonchordate deuterostome tissues homologous to the notochord as well as genes which are expressed in the notochord cells of vertebrate embryos.  相似文献   

5.
6.
BACKGROUND: Fate mapping studies have shown that progenitor cells of three vertebrate embryonic midline structures - the floorplate in the ventral neural tube, the notochord and the dorsal endoderm - occupy a common region prior to gastrulation. This common region of origin raises the possibility that interactions between midline progenitor cells are important for their specification prior to germ layer formation. RESULTS: One of four known zebrafish homologues of the Drosophila melanogaster cell-cell signaling gene Delta, deltaA (dlA), is expressed in the developing midline, where progenitor cells of the ectodermal floorplate, mesodermal notochord and dorsal endoderm lie close together before they occupy different germ layers. We used a reverse genetic strategy to isolate a missense mutation of dlA, dlAdx2, which coordinately disrupts the development of floorplate, notochord and dorsal endoderm. The dlAdx2 mutant embryos had reduced numbers of floorplate and hypochord cells; these cells lie above and beneath the notochord, respectively. In addition, mutant embryos had excess notochord cells. Expression of a dominant-negative form of Delta protein driven by mRNA microinjection produced a similar effect. In contrast, overexpression of dlA had the opposite effect: fewer trunk notochord cells and excess floorplate and hypochord cells. CONCLUSION: Our results indicate that Delta signaling is important for the specification of midline cells. The results are most consistent with the hypothesis that developmentally equivalent midline progenitor cells require Delta-mediated signaling prior to germ layer formation in order to be specified as floorplate, notochord or hypochord.  相似文献   

7.
8.
9.
10.
We use 3D time-lapse analysis of living embryos and laser scanning confocal reconstructions of fixed, staged, whole-mounted embryos to describe three-dimensional patterns of cell motility, cell shape change, cell rearrangement and tissue deformation that accompany formation of the ascidian notochord. We show that notochord formation involves two simultaneous processes occurring within an initially monolayer epithelial plate: The first is invagination of the notochord plate about the axial midline to form a solid cylindrical rod. The second is mediolaterally directed intercalation of cells within the plane of the epithelial plate, and then later about the circumference of the cylindrical rod, that accompanies its extension along the anterior/posterior (AP) axis. We provide evidence that these shape changes and rearrangements are driven by active extension of interior basolateral notochord cell edges directly across the faces of their adjacent notochord neighbors in a manner analogous to leading edge extension of lamellapodia by motile cells in culture. We show further that local edge extension is polarized with respect to both the AP axis of the embryo and the apicobasal axis of the notochord plate. Our observations suggest a novel view of how active basolateral motility could drive both invagination and convergent extension of a monolayer epithelium. They further reveal deep similarities between modes of notochord morphogenesis exhibited by ascidians and other chordate embryos, suggesting that cellular mechanisms of ascidian notochord formation may operate across the chordate phylum.  相似文献   

11.
Echinoderms, hemichordates and chordates are deuterostomes and share a number of developmental features. The Brachyury gene is responsible for formation of the notochord, the most defining feature of chordates, and thus may be a key to understanding the origin and evolution of the chordates. Previous studies have shown that the ascidian Brachyury (As-T and Ci-Bra) is expressed in the notochord and that a sea urchin Brachyury (HpTa) is expressed in the secondary mesenchyme founder cells. A recent study by [Tagawa et al. (1998)], however, revealed that a hemichordate Brachyury (PfBra) is expressed in a novel pattern in an archenteron invagination region and a stomodaeum invagination region in the gastrula. The present study demonstrated that the expression pattern of Brachyury (ApBra) of starfish embryos resembles that of PfBra in hemichordate embryos but not of HpTa in sea urchin embryos. Namely, ApBra is expressed in an archenteron invagination region and a stomodaeum invagination region.  相似文献   

12.
Fibroblast growth factor (FGF) induces the notochord and mesenchyme in ascidian embryos, via extracellular signal-regulated kinase (ERK) that belongs to the mitogen-activated protein kinase (MAPK) family. A cDNA microarray analysis was carried out to identify genes affected by an inhibitor of MAPK/ERK kinase (MEK), U0126, in embryos of the ascidian Ciona intestinalis. Data obtained from the microarray and in situ hybridization suggest that the majority of genes are downregulated by U0126 treatment. Genes that were downregulated in U0126-treated embryos included Ci-Bra and Ci-Twist-like1 that are master regulatory genes of notochord and mesenchyme differentiation, respectively. The plasminogen mRNA was downregulated by U0126 in presumptive endoderm cells. This suggests that a MEK-mediated extracellular signal is necessary for gene expression in tissues whose specification does not depend on cell-to-cell interaction. Among 85 cDNA clusters that were not affected by U0126, 30 showed mitochondria-like mRNA localization in the nerve cord/muscle lineage blastomeres in the equatorial region. The expression level and asymmetric distribution of these mRNA were independent of MEK signaling.  相似文献   

13.
Several genes containing the conserved T-box region in invertebrates and vertebrates have been reported recently. Here, we describe three novel members of the T-box gene family in zebrafish. One of these genes, tbx-c, is studied in detail. It is expressed in the axial mesoderm, notably, in the notochordal precursor cells immediately before formation of the notochord and in the chordoneural hinge of the tail bud, after the notochord is formed. In addition, its expression is detected in the ventral forebrain, sensory neurons, fin buds and excretory system. The expression pattern of tbx-c differs from that of the other two related genes, tbx-a and tbx-b. The developmental role of tbx-c has been analysed by overexpression of the full-length tbx-c mRNA and a truncated form of tbx-c mRNA, which encodes the dominant-negative Tbx-c. Overexpression of tbx-c causes expansion of the midline mesoderm and formation of ectopic midline structures at the expense of lateral mesodermal cells. In dominant-negative experiments, the midline mesoderm is reduced with the expansion of lateral mesoderm to the midline. These results suggest that tbx-c plays a role in formation of the midline mesoderm, particularly, the notochord. Moreover, modulation of tbx-c activity alters the development of primary motor neurons. Results of in vitro analysis in zebrafish animal caps suggest that tbx-c acts downstream of early mesodermal inducers (activin and ntl) and reveal an autoregulatory feedback loop between ntl and tbx-c. These data and analysis of midline (ntl-/- and flh-/-) and lateral mesoderm (spt-/-) mutants suggest that tbx-c may function during formation of the notochord.  相似文献   

14.
The negative regulation of vascular patterning is one of the least understood processes in vascular biology. In amniotes, blood vessels develop throughout the embryonic disc, except for a midline region surrounding the notochord. Here we show that the notochord is the primary signaling center for the inhibition of vessel formation along the embryonic midline. Notochord ablation in quail embryos results in vascular plexus formation at midline. Implantation of the notochord into paraxial and lateral mesoderm inhibits vessel formation locally. The notochord-expressed BMP antagonists Chordin and Noggin inhibit endothelial cell migration in vitro, and their ectopic expression in vivo results in a local disruption of vessel formation. Conversely, BMP-4 activates endothelial cell migration in vitro, and its ectopic expression along the notochord induces vascular plexus formation at midline. These data indicate an inhibitory role of the notochord in defining an avascular zone at the embryonic midline, in part via BMP antagonism.  相似文献   

15.
In the epiblast of elongating primitive-streak-stage avian embryos, MHP cells--short wedge-shaped neurepithelial cells contained within the median hinge point of the bending neural plate--arise from the midline prenodal and nodal area, whereas L cells--tall spindle-shaped neurepithelial cells constituting the lateral neural plate--arise from paired areas flanking the cranial primitive streak. These characteristic differences in neurepithelial cell shape are acquired as a result of inductive interactions with the notochord. Both MHP and L cells undergo extensive rearrangement (intercalation) during shaping and bending of the neural plate, but their pattern of rearrangement differs. MHP cells intercalate with other MHP cells and the population always spans the midline, whereas L cells intercalate with other L cells, remaining in bulk lateral to the midline. The following experiment was performed to establish whether these distinctive rearrangement patterns are determined prior to notochordal inductive interactions. Quail prospective MHP and L cells were transplanted isochronically and heterotopically to chick host blastoderms at stages prior to formation of the notochord (to wit, prospective MHP cells were transplanted into prospective L cell territory and vice versa) and the distribution, fate, and morphological characteristics of grafted cells were determined in chimeras collected 24 hr later. Our results demonstrate that heterotopic MHP and L cells do not adopt the rearrangement pattern characteristic of their new site; rather, they change their position so that grafted MHP cells intermix with MHP cells of the host and grafted L cells intermix with L cells of the host. Thus, patterns of neurepithelial cell rearrangement are determined prior to notochordal inductive interactions. When and how this determination occurs are topics for further studies.  相似文献   

16.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   

17.
Although cell intercalation driven by non-canonical Wnt/planar cell polarity (PCP) pathway-dependent mediolateral cell polarity is important for notochord morphogenesis, it is likely that multiple mechanisms shape the notochord as it converges and extends. Here we show that the recessive short-tailed Ciona savignyi mutation chongmague (chm) has a novel defect in the formation of a morphological boundary around the developing notochord. chm notochord cells initiate intercalation normally, but then fail to maintain their polarized cell morphology and migrate inappropriately to become dispersed in the larval tail. This is unlike aimless (aim), a mutation in the PCP pathway component Prickle, which has a severe defect in early mediolateral intercalation but forms a robust notochord boundary. Positional cloning identifies chm as a mutation in the C. savignyi ortholog of the vertebrate alpha 3/4/5 family of laminins. Cs-lamalpha3/4/5 is highly expressed in the developing notochord, and Cs-lamalpha3/4/5 protein is specifically localized to the outer border of the notochord. Notochord convergence and extension, reduced but not absent in both chm and aim, are essentially abolished in the aim/aim; chm/chm double mutant, indicating that laminin-mediated boundary formation and PCP-dependent mediolateral intercalation are each able to drive a remarkable degree of tail morphogenesis in the absence of the other. These mechanisms therefore initially act in parallel, but we also find that PCP signaling has an important later role in maintaining the perinotochordal/intranotochordal polarity of Cs-lamalpha3/4/5 localization.  相似文献   

18.
19.
Insulin-like growth factors (IGFs) are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b) in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号