首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 12-membered Treponema pallidum repeat (Tpr) protein family has been identified in T. pallidum subsp. pallidum, the causative agent of syphilis. The subfamily I Tpr proteins (C, D, F, and I) possess conserved sequence at the N- and C-termini and central regions that differentiate the members. These proteins may be important in the immune response during syphilis infection and in protective immunity. Strong antibody responses have been observed toward some of the subfamily I Tpr proteins during infection with different syphilis isolates. Some sequence variation has also been identified in one subfamily I Tpr member, TprD, among T. pallidum subsp. pallidum isolates. In this study, we examined sequences in the remaining subfamily I Tpr proteins among strains. Both TprF and TprI were conserved among T. pallidum subsp. pallidum isolates.While some heterogeneity was identified in TprC. We further examined the immune response and protective capacity of TprF protein in this paper. We demonstrate that the N-terminal conserved region of the subfamily I Tpr proteins elicits strong antibody and T-cell responses during infection, and immunization with this region attenuates syphilitic lesion development upon infectious challenge.  相似文献   

2.
Two new tprD alleles have been identified in Treponema pallidum: tprD2 is found in 7 of 12 T. pallidum subsp. pallidum isolates and 7 of 8 non-pallidum isolates, and tprD3 is found in one T. pallidum subsp. pertenue isolate. Antibodies against TprD2 are found in persons with syphilis, demonstrating that tprD2 is expressed during infection.  相似文献   

3.
梅毒是由密螺旋体苍白亚种( Treponema pallidum subsp. pallidum , Tp)感染引起的慢性系统性性传播疾病,流行于中低等收入国家。越来越多的临床病例表明清除Tp感染需要加强公共卫生筛查和治疗,而接种疫苗是预防Tp感染极有价值和首选的方法。本文概述了研制Tp疫苗的必要性,总结疫苗研究过程中候选抗原的相关信息及递送系统,分析Tp疫苗发展策略。  相似文献   

4.
Treponema pallidum subsp. pallidum, the spirochete that causes syphilis, is unusual in a number of respects, including its small genome size, inability to grow under standard in vitro culture conditions, microaerophilism, apparent paucity of outer membrane proteins, structurally complex periplasmic flagella, and ability to evade the host immune responses and cause disease over a period of years to decades. Many of these attributes are related ultimately to its protein content. Our knowledge of the activities, structure, and immunogenicity of its proteins has been expanded by the application of recombinant DNA, hybridoma, and structural fractionation techniques. The purpose of this monograph is to summarize and correlate this new information by using two-dimensional gel electrophoresis, monoclonal antibody reactivity, sequence data, and other properties as the bases of polypeptide identification. The protein profiles of the T. pallidum subspecies causing syphilis, yaws, and endemic syphilis are virtually indistinguishable but differ considerably from those of other treponemal species. Among the most abundant polypeptides are a group of lipoproteins of unknown function that appear to be important in the immune response during syphilitic infection. The periplasmic flagella of T. pallidum and other spirochetes are unique with regard to their protein content and ultrastructure, as well as their periplasmic location. They are composed of three core proteins (homologous to the other members of the eubacterial flagellin family) and a single, unrelated sheath protein; the functional significance of this arrangement is not understood at present. Although the bacterium contains the chaperonins GroEL and DnaK, these proteins are not under the control of the heat shock regulon as they are in most organisms. Studies of the immunogenicity of T. pallidum proteins indicate that many may be useful for immunodiagnosis and immunoprotection. Future goals in T. pallidum polypeptide research include continued elucidation of their structural locations and functional activities, identification and characterization of the low-abundance outer membrane proteins, further study of the immunoprotective and immunodiagnostic potential of T. pallidum proteins, and clarification of the roles of treponemal proteins in pathogenesis.  相似文献   

5.
A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen.  相似文献   

6.
7.
We investigated the evolution of 6 genes from the Treponema pallidum repeat (tpr) gene family, which encode potential virulence factors and are assumed to have evolved through gene duplication and gene conversion events. The 6 loci (tprC, D, G, J, I, and K) were sequenced and analyzed in several members of the genus Treponema, including the 3 subspecies of human T. pallidum (T. pallidum subsp. pallidum, pertenue, and endemicum), Treponema paraluiscuniculi (rabbit syphilis), and the unclassified Fribourg-Blanc (simian) isolate. Phylogenetic methods, recombination analysis, and measures of nucleotide diversity were used to investigate the evolutionary history of the tpr genes. Numerous instances of gene conversion were detected by all 3 methods including both homogenizing gene conversion that involved the entire length of the sequence as well as site-specific conversions that affected smaller regions. We determined the relative age and directionality of the gene conversion events whenever possible. Our data are also relevant to a discussion of the evolution of the treponemes themselves. Higher levels of variation exist between the human subspecies than within them, supporting the classification of the human treponemes into 3 subspecies. In contrast to published theories, the divergence and diversity of T. pallidum subsp. pertenue relative to the other subspecies does not support a much older origin of yaws at the emergence of modern human, nor is the level of divergence seen in T. pallidum subsp. pallidum consistent with a very recent (< 500 years) origin of this subspecies. In general, our results demonstrate that intragenomic recombination has played a significant role in the evolution of the studied tpr genes and emphasize that efforts to infer evolutionary history of the treponemes can be complicated if past recombination events are not recognized.  相似文献   

8.

Background

Since the first recorded epidemic of syphilis in 1495, controversy has surrounded the origins of the bacterium Treponema pallidum subsp. pallidum and its relationship to the pathogens responsible for the other treponemal diseases: yaws, endemic syphilis, and pinta. Some researchers have argued that the syphilis-causing bacterium, or its progenitor, was brought from the New World to Europe by Christopher Columbus and his men, while others maintain that the treponematoses, including syphilis, have a much longer history on the European continent.

Methodology/Principal Findings

We applied phylogenetics to this problem, using data from 21 genetic regions examined in 26 geographically disparate strains of pathogenic Treponema. Of all the strains examined, the venereal syphilis-causing strains originated most recently and were more closely related to yaws-causing strains from South America than to other non-venereal strains. Old World yaws-causing strains occupied a basal position on the tree, indicating that they arose first in human history, and a simian strain of T. pallidum was found to be indistinguishable from them.

Conclusions/Significance

Our results lend support to the Columbian theory of syphilis''s origin while suggesting that the non-sexually transmitted subspecies arose earlier in the Old World. This study represents the first attempt to address the problem of the origin of syphilis using molecular genetics, as well as the first source of information regarding the genetic make-up of non-venereal strains from the Western hemisphere.  相似文献   

9.
Although the three Treponema pallidum subspecies (T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum), Treponema paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme cause clinically distinct diseases, these pathogens are genetically and antigenically highly related and are able to cause persistent infection. Recent evidence suggests that the putative surface-exposed variable antigen TprK plays an important role in both treponemal immune evasion and persistence. tprK heterogeneity is generated by nonreciprocal gene conversion between the tprK expression site and donor sites. Although each of the above-mentioned species and subspecies has a functional tprK antigenic variation system, it is still unclear why the level of expression and the rate at which tprK diversifies during infection can differ significantly among isolates. To identify genomic differences that might affect the generation and expression of TprK variants among these pathogens, we performed comparative sequence analysis of the donor sites, as well as the tprK expression sites, among eight T. pallidum subsp. pallidum isolates (Nichols Gen, Nichols Sea, Chicago, Sea81-4, Dal-1, Street14, UW104, and UW126), three T. pallidum subsp. pertenue isolates (Gauthier, CDC2, and Samoa D), one T. pallidum subsp. endemicum isolate (Iraq B), the unclassified Fribourg-Blanc isolate, and the Cuniculi A strain of T. paraluiscuniculi. Synteny and sequence conservation, as well as deletions and insertions, were found in the regions harboring the donor sites. These data suggest that the tprK recombination system is harbored within dynamic genomic regions and that genomic differences might be an important key to explain discrepancies in generation and expression of tprK variants among these Treponema isolates.  相似文献   

10.
Improved understanding of the differential diagnosis of endemic treponematoses is needed to inform clinical practice and to ensure the best outcome for a new global initiative for the eradication of yaws, bejel, and pinta. Traditionally, the human treponematoses have been differentiated based upon their clinical manifestations and epidemiologic characteristics because the etiologic agents are indistinguishable in the laboratory. Serological tests are still considered standard laboratory methods for the diagnosis of endemic treponematoses and new rapid point-of-care treponemal tests have become available which are extremely useful in low-resource settings. In the past ten years, there has been an increasing effort to apply polymerase chain reaction to treponematoses and whole genome fingerprinting techniques have identified genetic signatures that can differentiate the existing treponemal strains; however, definitive diagnosis is also hampered by widespread unavailability of molecular diagnostics. We review the dilemmas in the diagnosis of endemic treponematoses, and advances in the discovery of new diagnostic tools.  相似文献   

11.
C. Meyer  C. Jung  T. Kohl  A. Poenicke  A. Poppe  K.W. Alt   《HOMO》2002,53(1):39-58
The origin and subsequent spread of the treponematoses, especially that of venereal syphilis, has been the subject of considerable scientific attention. Various theories were put forth and palaeopathological specimens were used for their validation in recent times. One influential contribution was the paper by Baker & Armelagos in 1988. Numerous new findings and results on both sides of the Atlantic call for a new evaluation of the available osseous material. A review of the recent literature leads to the suggestion of a worldwide distribution of non-venereal treponemal disease since the emergence of Homo and to a first epidemic outbreak of venereal syphilis in Europe of the late 15th and the early 16th century, which was a time of change and enormous sexual liberty. Old World specimens with pathological alterations attributed to venereal syphilis and dated to precolumbian times seem to invalidate the Columbian theory and call for a more differentiated analysis of the phenomenon of syphilis than a theory based on a single factor can provide. With the help of molecular methods which now allow a positive identification of Treponema pallidum pallidum, causative agent of venereal syphilis, in palaeopathological material, it seems possible to elucidate the matter of origin and spread of syphilis further and to evaluate previous diagnoses of treponemal disease.  相似文献   

12.
Aspects of the biology of T. pallidum subsp. pallidum, the agent of syphilis, are examined in the context of a century of experimental studies and the recently determined genome sequence. T. pallidum and a group of closely related pathogenic spirochetes have evolved to become highly invasive, persistent pathogens with little toxigenic activity and an inability to survive outside the mammalian host. Analysis of the genome sequence confirms morphologic studies indicating the lack of lipopolysaccharide and lipid biosynthesis mechanisms, as well as a paucity of outer membrane protein candidates. The metabolic capabilities and adaptability of T. pallidum are minimal, and this relative deficiency is reflected by the absence of many pathways, including the tricarboxylic acid cycle, components of oxidative phosphorylation, and most biosynthetic pathways. Although multiplication of T. pallidum has been obtained in a tissue culture system, continuous in vitro culture has not been achieved. The balance of oxygen utilization and toxicity is key to the survival and growth of T. pallidum, and the genome sequence reveals a similarity to lactic acid bacteria that may be useful in understanding this relationship. The identification of relatively few genes potentially involved in pathogenesis reflects our lack of understanding of invasive pathogens relative to toxigenic organisms. The genome sequence will provide useful raw data for additional functional studies on the structure, metabolism, and pathogenesis of this enigmatic organism.  相似文献   

13.
The tprK gene of Treponema pallidum subsp. pallidum, the causative agent of venereal syphilis, belongs to a 12-member gene family and encodes a protein with a predicted cleavable signal sequence and predicted transmembrane domains. Except for the Nichols type strain, all rabbit-propagated isolates of T. pallidum examined thus far are comprised of mixed populations of organisms with heterogeneous tprK sequences. We show that tprK sequences in treponemes obtained directly from syphilis patients are also heterogeneous. Clustering analysis demonstrates that primary chancre tprK sequences are more likely to cluster within a sample than among samples and that tighter clustering is seen within chancre samples than within rabbit-propagated isolates. Closer analysis of tprK sequences from a rabbit-propagated isolate reveals that individual variable regions have different levels of diversity, suggesting that variable regions may have different intrinsic rates of sequence change or may be under different levels of selection. Most variable regions show increased sequence diversity upon passage. We speculate that the diversification of tprK during infection allows organisms to evade the host immune response, contributing to reinfection and persistent infection.  相似文献   

14.
15.
16.

Background

T. pallidum subsp. endemicum (TEN) is the causative agent of bejel (also known as endemic syphilis). Clinical symptoms of syphilis and bejel are overlapping and the epidemiological context is important for correct diagnosis of both diseases. In contrast to syphilis, caused by T. pallidum subsp. pallidum (TPA), TEN infections are usually spread by direct contact or contaminated utensils rather than by sexual contact. Bejel is most often seen in western Africa and in the Middle East. The strain Bosnia A was isolated in 1950 in Bosnia, southern Europe.

Methodology/Principal Findings

The complete genome of the Bosnia A strain was amplified and sequenced using the pooled segment genome sequencing (PSGS) method and a combination of three next-generation sequencing techniques (SOLiD, Roche 454, and Illumina). Using this approach, a total combined average genome coverage of 513× was achieved. The size of the Bosnia A genome was found to be 1,137,653 bp, i.e. 1.6–2.8 kbp shorter than any previously published genomes of uncultivable pathogenic treponemes. Conserved gene synteny was found in the Bosnia A genome compared to other sequenced syphilis and yaws treponemes. The TEN Bosnia A genome was distinct but very similar to the genome of yaws-causing T. pallidum subsp. pertenue (TPE) strains. Interestingly, the TEN Bosnia A genome was found to contain several sequences, which so far, have been uniquely identified only in syphilis treponemes.

Conclusions/Significance

The genome of TEN Bosnia A contains several sequences thought to be unique to TPA strains; these sequences very likely represent remnants of recombination events during the evolution of TEN treponemes. This finding emphasizes a possible role of repeated horizontal gene transfer between treponemal subspecies in shaping the Bosnia A genome.  相似文献   

17.
Despite the completion of the Treponema pallidum genome project, only minor genetic differences have been found between the subspecies that cause venereal syphilis (ssp. pallidum) and the nonvenereal diseases yaws (ssp. pertenue) and bejel (ssp. endemicum). In this paper, we describe sequence variation in the arp gene which allows straightforward differentiation of ssp. pallidum from the nonvenereal subspecies. We also present evidence that this region is subject to positive selection in ssp. pallidum, consistent with pressure from the immune system. Finally, the presence of multiple, but distinct, repeat motifs in both ssp. pallidum and Treponema paraluiscuniculi (the pathogen responsible for rabbit syphilis) suggests that a diverse repertoire of repeat motifs is associated with sexual transmission. This study suggests that variations in the number and sequence of repeat motifs in the arp gene have clinical, epidemiological, and evolutionary significance.  相似文献   

18.
The surface of Treponema pallidum subsp. pallidum (T. pallidum), the etiologic agent of syphilis, appears antigenically inert and lacks detectable protein, as judged by immunocytochemical and biochemical techniques commonly used to identify the outer membrane (OM) constituents of gram-negative bacteria. We examined T. pallidum by freeze-fracture electron microscopy to visualize the architecture of its OM. Treponema phagedenis biotype Reiter (T. phagedenis Reiter), a nonpathogenic host-associated treponeme, and Spirochaeta aurantia, a free-living spirochete, were studied similarly. Few intramembranous particles interrupted the smooth convex and concave fracture faces of the OM of T. pallidum, demonstrating that the OM of this organism is an unusual, nearly naked lipid bilayer. In contrast, the concave fracture face of the OM of S. aurantia was densely covered with particles, indicating the presence of abundant integral membrane proteins, a feature shared by typical gram-negative organisms. The concentration of particles in the OM concave fracture face of T. phagedenis Reiter was intermediate between those of T. pallidum and S. aurantia. Similar to typical gram-negative bacteria, the OM convex fracture faces of the three spirochetes contained relatively few particles. The unique molecular architecture of the OM of T. pallidum can explain the puzzling in vitro properties of the surface of the organism and may reflect a specific adaptation by which treponemes evade the host immune response.  相似文献   

19.
Characterization of monoclonal antibodies to Treponema pallidum   总被引:19,自引:0,他引:19  
Thirteen hybrid cell lines which produce mouse monoclonal antibodies to Treponema pallidum, the causative agent of syphilis, have been established. All of the monoclonal antibodies react with T. pallidum, Nichols strain, in ELISA and in immunofluorescence assays, but do not react with normal rabbit testicular tissue in the ELISA. Two of these antibodies were demonstrated to react with the nonpathogenic treponemes T. phagedenis, biotype Reiter, T. refringens (Noguchi strain), T. vincentii, and T. denticola (strains 11 and W), as well as with Borrelia recurrentis, Leptospira interrogans, serogroup Canicola, and the swine pathogen T. hyodysenteriae. The remaining 11 antibodies react with four recently isolated strains of T. pallidum, but with none of the related nonpathogens nor with Borrelia or Leptospira. Thus, our results to date indicate that these monoclonal antibodies may identify antigenic determinants that are specific either for T. pallidum alone or for those treponemes which are pathogenic for humans. The molecular specificities of six of the 13 antibodies were determined by Western blotting. We anticipate potential usefulness of these antibodies in the investigation of the antigenic structure of T. pallidum, the taxonomic study of the pathogenic and nonpathogenic treponemes, and in the diagnosis of syphilis.  相似文献   

20.
Following testicular infection of rabbits with Treponema pallidum, different antibodies become detectable initially at the time of healing. Experiments were performed to determine a functional role for these antibodies. Rabbits were sacrificed after 4-8 days. Treponemal numbers steadily increased for 10-12 days. Thereafter, host defenses were sufficiently stimulated to begin clearing the organisms. Antibodies in serum and antibodies localized at the site of infection were quantitated using radioimmunoassay and enzyme-linked immunosorbent assay (ELISA) techniques. Anti-treponemal IgG was detected as early as day 4. Quantities of antibody correspondingly increased with time following infection. Treponema pallidum was harvested 7 and 14 days postinfection and tested for surface antibodies. With increasing days postinfection, more antibody was found on the organisms. Two functional properties of these antibodies were shown. Sera from 24 of 45 rabbits infected for 14 days immobilized T. pallidum in the presence of complement and 14-day sera blocked the attachment of T. pallidum to tissue culture cells. We suggest that antibody-mediated, complement-dependent immobilization of T. pallidum and blockage of attachment are at least partially responsible for healing of testicular lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号