首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.  相似文献   

2.
3.
4.
The addition of sulfur to iron-grown Thiobacillus ferrooxidans resulted in a rapid inhibition in the rates of protein synthesis and RNA synthesis. The inhibition of both functions was measured within 15 to 30 min and was maximal between 70 and 90% compared to the iron-grown controls. DNA synthesis, carbon dioxide fixation, and short-term ferrous oxidation rates of the bacteria growing on ferrous ions were not effected by sulfur addition, indicating that the sulfur addition was not perturbing general cellular energy metabolism. The inhibition caused by sulfur mimicked the effect of the RNA synthesis inhibitor, rifampicin, which inhibited both RNA and protein synthesis, but did not correspond with the translational inhibitor, chloramphenicol, which inhibited only protein synthesis in the first hour. Since chloramphenicol pretreatment did not block the sulfur effect, the inhibition of RNA synthesis following sulfur addition was not mediated through protein synthesis.  相似文献   

5.
When Acidithiobacillus ferrooxidans ATCC23270 cells, grown for many generations on sulfur were grown in sulfur medium with and without Fe(3+), the bacterium markedly increased not only in iron oxidase activity but also in Fe(2+)-producing sulfide:ferric ion oxidoreductase (SFORase) activity during the early log phase, and retained part of these activities during the late log phase. The activity of SFORase, which catalyzes the production of Fe(2+) from Fe(3+) and sulfur, of sulfur-grown cells was approximately 10-20 fold higher than that of iron-grown cells. aa(3) type cytochrome c oxidase, an important component of iron oxidase in A. ferrooxidans, was partially purified from sulfur-grown cells. A. ferrooxidans ATCC23270 cells grown for many generations on sulfur had the ability to grow on iron as rapidly as that did iron-grown cells. These results suggest that both iron oxidase and Fe(2+)-producing SFORase have a role in the energy generation of A. ferrooxidans ATCC23270 from sulfur.  相似文献   

6.
T Sugio  S Kudo  T Tano  K Imai 《Journal of bacteriology》1982,150(3):1109-1114
Properties of a heat-labile glucose transport system in Thiobacillus ferrooxidans strain AP-44 were investigated with iron-grown cells. [14C]glucose was incorporated into cell fractions, and the cells metabolized [14C]glucose to 14CO2. Amytal, rotenone, cyanide, azide, 2,4-dinitrophenol, and dicyclohexylcarbodiimide strongly inhibited [14C]glucose uptake activity, suggesting the presence of an energy-dependent glucose transport system in T. ferrooxidans. Heavy metals, such as mercury, silver, uranium, and molybdate, markedly inhibited the transport activity at 1 mM. When grown on mixotrophic medium, the bacteria preferentially utilized ferrous iron as an energy source. When iron was exhausted, the cells used glucose if the concentration of ferrous sulfate in the medium was higher than 3% (wt/vol). However, when ferrous sulfate was lower than 1%, both of the energy sources were consumed simultaneously.  相似文献   

7.
Cytochromes c of Acidithiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The chemolithoautotrophic Gram-negative bacterium Acidithiobacillus ferrooxidans is versatile and can grow on a number of electron donors and acceptors. In the A. ferrooxidans ATCC 23270 genome, computer analysis identified 11 genes encoding putative cytochromes c. At least eight putative cytochromes c were differentiated on gels in ATCC 33020 cells grown on ferrous iron or sulfur. All these cytochromes were associated with the inner or the outer membranes. Lower levels of total cytochromes c were observed in sulfur- than in ferrous iron-grown cells. One cytochrome c was specific for sulfur conditions while three were specific for iron conditions, suggesting that cytochrome c synthesis is modulated depending on the electron donor.  相似文献   

8.
A sulfur:ferric ion oxidoreductase that utilizes ferric ion (Fe3+) as an electron acceptor of elemental sulfur was purified from iron-grown Thiobacillus ferrooxidans to an electrophoretically homogeneous state. Under anaerobic conditions in the presence of Fe3+, the enzyme reduced 4 mol of Fe3+ with 1 mol of elemental sulfur to give 4 mol of Fe2+ and 1 mol of sulfite, indicating that it corresponds to a ferric ion-reducing system (T. Sugio, C. Domatsu, O. Munakata, T. Tano, and K. Imai, Appl. Environ. Microbiol. 49:1401-1406, 1985). Under aerobic conditions, sulfite, but not Fe2+, was produced during the oxidation of elemental sulfur by this enzyme because the Fe2+ produced was rapidly reoxidized chemically by molecular oxygen. The possibility that Fe3+ serves as an electron acceptor under aerobic conditions was ascertained by adding o-phenanthroline, which chelates Fe2+, to the reaction mixture. Sulfur:ferric ion oxidoreductase had an apparent molecular weight of 46,000, and it is composed of two identical subunits (Mr = 23,000) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sulfur oxidation by this enzyme was absolutely dependent on the presence of reduced glutathione. The enzyme had an isoelectric point and a pH optimum at pH 4.6 and 6.5, respectively. Almost all the activity of sulfur:ferric ion oxidoreductase was observed in the osmotic shock fluid of the cells, suggesting that it was localized in the periplasmic space of the cells.  相似文献   

9.
Bacterial leaching of sulfide ores using Thiobacillus ferrooxidans, Thiobacillus thiooxidans, or a combination of the two was studied at various concentrations of specific anions. Selective zinc and copper solubilization was obtained by inhibiting iron oxidation without affecting sulfur/sulfide oxidation. Phosphate reduced iron solubilization from a pyrite (FeS(2))-sphalerite (ZnS) mixture without significantly affecting zinc solubilization. Copper leaching from a chalcopyrite (CuFeS(2))-sphalerite mixture was stimulated by phosphate, whereas chloride accelerated zinc extraction. In a complex sulfide ore containing pyrite, chalcopyrite, and sphalerite, both phosphate and chloride reduced iron solubilization and increased copper extraction, whereas only chloride stimulated zinc extraction. Maximum leaching obtained was 100% zinc and 50% copper. Time-course studies of copper and zinc solubilization suggest the possibility of selective metal recovery following treatment with specific anions.  相似文献   

10.
Lazaroff, Norman (British Columbia Research Council, Vancouver, B.C., Canada). Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans. J. Bacteriol. 85:78-83. 1963.-The growth of Thiobacillus ferrooxidans is initially inhibited in media containing ferrous chloride in place of ferrous sulfate. This inhibition of growth is due to the requirement of a high relative proportion of sulfate ions to chloride (or other anions) for iron oxidation. Adaptation takes place, producing strains which are able to oxidize iron in media containing an initially unfavorable anionic composition. Adaptation is possibly due to the selection of spontaneous mutants capable of oxidizing iron in high chloride, low sulfate media. Such cells are found at a frequency of 10(-5) of the population of unadapted cultures.  相似文献   

11.
Microbial leaching of metals from sulfide minerals   总被引:20,自引:0,他引:20  
Microorganisms are important in metal recovery from ores, particularly sulfide ores. Copper, zinc, gold, etc. can be recovered from sulfide ores by microbial leaching. Mineral solubilization is achieved both by 'direct (contact) leaching' by bacteria and by 'indirect leaching' by ferric iron (Fe(3+)) that is regenerated from ferrous iron (Fe(2+)) by bacterial oxidation. Thiobacillus ferrooxidans is the most studied organism in microbial leaching, but other iron- or sulfide/sulfur-oxidizing bacteria as well as archaea are potential microbial agents for metal leaching at high temperature or low pH environment. Oxidation of iron or sulfur can be selectively controlled leading to solubilization of desired metals leaving undesired metals (e.g., Fe) behind. Microbial contribution is obvious even in electrochemistry of galvanic interactions between minerals.  相似文献   

12.
The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.  相似文献   

13.
Activation of bovine plasminogen by Streptococcus uberis   总被引:3,自引:0,他引:3  
Abstract Thiosulfate and tetrathionate oxidation activity of Thiobacillus ferrooxidans were found to be absent in iron-growth cell as well as in the cells grown anaerobically on elemental sulfur. While the thiosulfate oxidase activity was absent in the cell-free extract of the above cells, the activity of rhodanese was present irrespective of the culture condition of T. ferrooxidans . It is thus conceivable that rhodanese is not involved in thiosulfate metabolism. During growth in presence of ferrous sulfate plus elemental sulfur, the thiosulfate/tetrathionate oxidation activity was absent till the oxidation of ferrous iron was complete and the cells harvested only in the latter period acquired the thiosulfate/tetrathionate oxidation activity. Thus it becomes evident that the inhibition of thiosulfate and tetrathionate oxidation is solely due to presence of ferrous iron.  相似文献   

14.
Ferrobacillus ferrooxidans, grown on either elemental sulfur or ferrous sulfate, was able to use either substrate as an energy source for the assimilation of CO(2). In both cases, 0.01 mumole of carbon was incorporated per mumole of oxygen utilized. Glucose inhibited substrate oxidation and CO(2) fixation. Sulfur and iron oxidation were inhibited 5 to 15% and 40 to 50%, respectively, in the presence of 10% glucose. Under the same conditions, CO(2) assimilation was inhibited 50% with elemental sulfur as the energy source, and was almost totally inhibited when ferrous iron was used.  相似文献   

15.
Thiobacillus ferrooxidans cells grown on ferrous iron oxidized sulfite to sulfate at pH 3, possibly by a free radical mechanism involving iron and cytochrome oxidase. A purely chemical system with low concentrations of Fe3+ simulated the T. ferrooxidans system. Metal chelators, ethylenediamine tetraacetic acid (EDTA), 4,5-dihydroxy-1-3-benzene disulfonic acid (Tiron), o-phenanthroline, and 2,2'-dipyridyl, inhibited both sulfite oxidation systems, but the T. ferrooxidans system was inhibited only after the initial brief oxygen consumption. EDTA and Tiron, strong chelators of Fe3+, inhibited the oxidation at lower concentrations than o-phenanthroline and 2,2'-dipyridyl, strong chelators of Fe2+. Inhibition of Fe3+-catalyzed sulfite oxidation by EDTA and Tiron was instant, but the inhibition by o-phenanthroline and dipyridyl was briefly delayed, presumably for the reduction of Fe3+ to Fe2+. Mannitol, a free radical scavenger, inhibited both systems to the same extent. Cyanide and azide inhibited only the T. ferrooxidans system, suggesting a role of cytochrome oxidase. It is proposed that sulfite is oxidized by a free radical mechanism initiated by Fe3+ on the cell surface of T. ferrooxidans. Cytochrome oxidase is possibly involved in the regeneration of Fe3+ from Fe2+ by the normal Fe2+-oxidizing system of T. ferrooxidans.  相似文献   

16.
Iron and sulfur oxidation by Thiobacillus ferrooxidans as well as growth on ferrous iron were inhibited by a variety of low molecular weight organic compounds. The influences of chemical structure of the organic inhibitors, pH, temperature, physical treatment of cells, and added inhibitory or stimulatory inorganic ions and iron oxidation suggest that a major factor contributing to the inhibitory effects on iron oxidation is the relative electronegativity of the organic molecule. The data also suggest that inhibitory organic compounds may (i) directly affect the iron-oxidizing enzyme system, (ii) react abiologically with ferrous iron outside the cell, (iii) interfere with the roles of phosphate and sulfate in iron oxidation, and (iv) nonselectively disrupt the cell envelope or membrane.  相似文献   

17.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

18.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

19.
A heterotrophic bacterium, isolated from an acidic stream in a disused pyrite mine which contained copious growths of "acid streamers," displayed characteristics which differentiated it from previously described mesophilic acidophiles. The isolate was obligately acidophilic, with a pH range of 2.0 to 4.4 and an optimum pH of 3.0. The bacterium was unable to fix carbon dioxide but oxidized ferrous iron, although at a slower rate than either Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Elemental sulfur and manganese(II) were not oxidized. In liquid media, the isolate produced macroscopic streamerlike growths. Microscopic examination revealed that the bacterium formed long (greater than 100 microns) filaments which tended to disintegrate during later growth stages, producing single, motile cells and small filaments. The isolate did not appear to utilize the energy from ferrous iron oxidation. Both iron (ferrous or ferric) and an organic substrate were necessary to promote growth. The isolate displayed a lower tolerance to heavy metals than other iron-oxidizing acidophiles, and growth was inhibited by exposure to light. There was evidence of extracellular sheath production by the isolate. In this and some other respects, the isolate resembles members of the Sphaerotilus-Leptothrix group of filamentous bacteria. The guanine-plus-cytosine content of the isolate was 62 mol%, which is less than that recorded for Sphaerotilus-Leptothrix spp. and greater than those of L. ferrooxidans and most T. ferrooxidans isolates.  相似文献   

20.
采用非稳态法测定FeSO4在包埋和未包埋氧化亚铁硫杆菌的凝胶中的有效扩散系数。结果表明,FeSO4在凝胶中的有效扩散系数De随着海藻酸钠浓度的升高而降低,当海藻酸钠浓度为2%时最优;凝胶剂CaCl2的浓度对扩散系数的影响较小。包埋的氧化亚铁硫杆菌在10h达到增殖平衡,而FeSO4在包埋细菌的凝胶内扩散系数明显减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号