首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several tiny crinoids with crowns as small as 1 mm, or less, in width are newly recognized from the Hunsrück Slate of southwestern Germany. The presence of erect arms above an amorphous calyx in some specimens can be inferred. Based on comparison with the size and gross morphology of developmental stages in living crinoids, these tiny Hunsrück crinoids are judged to be at an early postlarval stage that is analogous to the pentacrinoid stage just after development from the stalked, but armless, smaller cystidean larval stage found in both living comatulids and isocrinids. Some of these tiny crinoids have a stalk up to 4 mm long attached to a now pyritized former substrate. Their clustered occurrence suggests gregarious settlement of larvae. Taxonomic identification of these presumed pentacrinoids is not possible, even to the sub‐class level, although they are preserved with larger juveniles of the cladids Propoteriocrinus and Lasiocrinus. These larger juveniles exhibit 3‐D pyritized calcite plates, whereas the probable pentacrinoids appear to be preserved as flattened, micro‐crystalline pyritized dermal tissues that enclosed lightly calcified, porous ossicles. The pentacrinoids were likely buried within weeks or months of hatching, based on developmental stages in similar‐sized living crinoids. These tiny crinoids, presumably pentacrinoids, are a further example of the extraordinarily detailed preservation of delicate tissues in pyrite from the Hunsrück Slate. They are most likely the pentacrinoid stage from one or more of the crinoid taxa (30 genera) present in the Hunsrück Slate. Assuming these are not microcrinoids, they are the first report of pentacrinoids from the fossil record and document that a Palaeozoic sister group to modern crinoids had similar developmental stages.  相似文献   

2.
Early Danian cool-water bryozoan mounds exposed in the coastal cliff Stevns Klint in Denmark were formed shortly after the Cretaceous–Tertiary mass extinction. They represent a relatively deep-water, highly diverse benthic ecosystem within the epeiric seaway that covered the Danish Basin. The mounds are 50–110 m long and reached a height of about 5–10 m above the seafloor; they are asymmetrical with a steep southern and a gentle northern flank, and were dominated by small suspension feeders. The benthic elements generally occur as fragments set in a carbonate mud matrix. The main skeletal contributors are delicate branching bryozoans with minor contributions of bryozoan sheets, and nodular/arborescent bryozoans. Locally abundant octocorals occur on the mound crests and upper parts of the steep flanks. Echinoids are present in minor amounts, but are locally abundant. Serpulids, crinoids, asteroids, brachiopods, bivalves, massive calcareous sponges, and benthic foraminifers are generally minor contributors to the benthic mound fauna. Influx of planktonic foraminifers, coccoliths and other planktonic organisms was high and was probably a major source of nutrient supply to the mainly suspension-feeding benthic fauna.

The faunal association reflects a relatively low energy environment with a high, possibly seasonal influx of particulate nutrients. The best growth conditions with respect to nutrient influx were on the mound crest and upper steep flank reflected by the diverse and relatively largest benthic faunal elements. Periodic reworking and winnowing occurred across the entire mound structure but most prominent on the gentle northern flanks limiting the benthic growth and notably the colony density and size of delicate branching bryozoans. Vagile benthic faunas were also adapted to different areas on the mound. Irregular echinoids preferred the intermound areas within fine-grained wackestone–packstone facies where they ploughed through the sediment, whereas regular echinoids were epifaunal and preferred the upper parts of the mounds, possibly feeding mainly on bryozoans. Skeletons of both groups became concentrated at the toe of the steep flanks and in the intermound areas by physical reworking during major storms.

Changes in faunal composition on the mound crests occurred rhythmically on both small and large scale during mound growth. Rhythmically recurring faunal assemblages reflect alternating hydrodynamic conditions on the seafloor with respect to nutrient influx and energy, which probably were linked to short-term seasonal and long-term climatic variations; the long-term alternation may be within the Milankovitch frequency band. Blooming events of bryozoan sheets resulted from relatively short periods with large amounts of available food and suitable substrate. Successful colonisation by octocorals on the other hand reflected longer-term favourable conditions on the mounds possibly associated with overall higher energy levels.

A possible Pleistocene analogue to the bryozoan-dominated Danian mounds occurs at the shelf-slope break of the Great Australian Bight. Both of these cool-water mound systems deviate from most other biogenic mounds known from the fossil record in their non-cemented nature, regular geometry and a lack of core and flank facies.  相似文献   


3.
Carriacou, a small island in the Grenadines, Lesser Antilles, has a Cenozoic rock record that has been important in interpreting the geologic history of the Southern Lesser Antilles Arc Platform. The Lower‐Middle Miocene sedimentary succession of the southeast and east coasts, consisting of the Belmont, Kendeace, Carriacou and Grand Bay formations, has been interpreted as a shallowing‐upward sequence from turbidite basin to nearshore?/beach? palaeoenvironments. An earlier interpretation of the Belmont Formation as having been deposited in shallow water is at variance with the turbiditic nature of the succession; the included fossils are considered allochthonous. However, an interpretation of the Grand Bay Formation as deep water is supported by multiple lines of evidence, including sedimentology (turbidites), ichnology (autochthonous association of burrows typical of deep‐water environments) and palaeontology (terrestrial, planktic, and shallow and deep water benthic species mixed together). The minimum depth of deposition of the Grand Bay Formation was 150–200 m. This suggests that the (unseen) contact between the Carriacou and Grand Bay formations is either an unconformity, formed following rapid deepening of the basin, or a fault, the Grand Bay Formation being deposited in a separate basin from the shallowing‐upwards Belmont‐Kendeace‐Carriacou formations, against which it is now juxtaposed  相似文献   

4.
The response of the Earth’s biota to global change is of fundamental interest to paleontologists, but patterns of change in paleontologic data are also of interest to a wider spectrum of Earth scientists in that those patterns are of great significance in constraining hypotheses that attempt to explain physical changes in the Earth’s environment. The Cretaceous–Tertiary (K–T) boundary is a case in point. Some paleontologists have criticized the bolide impact hypothesis, not because they deny the impact but because the proposed effects of that impact do not always conform to the available paleontological data. Benthic foraminifera are of particular interest in this context because it has been suggested for over 20 years that shallow-water benthic foraminifera were affected more severely than deep-water benthic foraminifera by events at the K–T boundary. This observation adds to the fact of planktonic foraminiferal extinction and indicates that K–T boundary environmental effects were largely restricted to shallow waters. In this paper I review all published works on smaller benthic foraminifera at the K–T boundary and conclude the following. (1) Shallow-water benthic foraminifera were not more severely affected than deeper dwelling species. True extinction, as opposed to local extinction and/or mass mortality, is generally quite low no matter what the water depth. (2) The data are not sufficient in quality, quantity and geographic range to conclude that there is a latitudinal pattern of extinction. (3) In general, biotic changes (such as they are) begin before the boundary in shallow and intermediate depth waters and at the boundary in deep water. Disagreements about the placement of the boundary and the presence, absence and duration of hiatuses hinder more precise conclusions. (4) There appears to be preferential survivorship of epifaunal species into the early Danian with a short interval dominated by infaunal taxa in the earliest Danian. This pattern can best be explained by short-lived input of increased amounts of organic matter at the boundary followed by a sudden collapse of primary productivity and, hence, major reduction or cessation of organic flux to the seafloor. In summary, based on the current dataset, smaller benthic foraminifera, no matter whether they lived in shallow or deep waters, high or low latitudes, or infaunal or epifaunal microhabitats, survived the environmental events across the K–T boundary quite well. Mass extinction does not characterize this group of organisms at this time.  相似文献   

5.
Recent debates over the evolutionary relationships of early echinoderms have relied heavily on morphological evidence from the feeding ambulacral system. Eumorphocystis, a Late Ordovician diploporitan, has been a focus in these debates because it bears ambulacral features that show strong morphological similarity to early crinoid arms. Undescribed and well‐preserved specimens of Eumorphocystis from the Bromide Formation (Oklahoma, USA) provide new data illustrating that composite arms supported by a radial plate that bear a triserial arrangement of axial and extraxial components encasing a coelomic extension can also be found in blastozoans. Previous reports have considered these arm structures to be restricted to crinoids; these combined features have not been previously observed in blastozoan echinoderms. Phylogenetic analyses suggest that Eumorphocystis and crinoids are sister taxa and that shared derived features of these taxa are homologous. The evidence from the arms of Eumorphocystis suggests that crinoid arms were derived from a specialized blastozoan ambulacral system that lost feeding brachioles and strongly suggests that crinoids are nested within blastozoans.  相似文献   

6.
Exploitation of groundfish off the U.S. Pacific coast reached maximum levels during the 1990s, resulting in severe declines in at least nine species of groundfish. From 1988 to 1990, we used the 2-man submersible Delta to make 42 dives and run replicate visual belt transects at six stations ranging from 67-360 m in depth at Heceta Bank on the outer continental shelf of Oregon. We identified four major habitats and associated benthic macroinvertebrate and groundfish assemblages: (1) shallow rock ridges and large boulders (< 100 m deep) dominated by basket stars, juvenile rockfishes, yelloweye rockfish, and lingcod; (2) mid-depth small boulder-cobbles (100-150 m) dominated by crinoids, brittle stars, rosethorn, pygmy/Puget sound, and canary rockfishes; (3) deep cobble (150-200 m) dominated by crinoids, brittle stars and various small rockfish species, and (4) deep mud slope (> 200 m) dominated by fragile urchins, sea cucumbers, shortspine thornyhead, and flatfishes. Although substantial interannual variation in groundfish abundance among seafloor types was evident in the 12 most abundant and/or commercially important fish taxa sampled, high variance resulted in statistically significant differences among years only in juvenile rockfishes. These data provide a baseline for future comparisons exploring long-term change this continental-shelf ecosystem.  相似文献   

7.
To date, knowledge about ontogenetic development of crinoids has been exclusively based on comatulid species, since early stages of other crinoid taxa have not been available so far. The authors now present a scanning electron microscopical and light microscopical study on a developmental series of young sessile individuals of the cyrtocrinid Cyathidium foresti. This species displays a developmental type of its own. In some aspects, the early stages resemble the early attached larva of comatulids (e.g. vestibulum, enteric sac, somatocoelomic cavity) but differ clearly in other (e.g. far oral position of hydrocoelomic primordium, pattern of podia formation, early splitting of the roof, absence of chambered organ). Therefore a specific term is proposed for this new kind of larva: cyathidula. Older juveniles are quite similar to adults; the developmental course is direct. Consequently the group of holopodid crinoids to which Cyathidium and Holopus belong, can be concluded to originate phylogenetically from neotenic larvae.  相似文献   

8.

Borings, attributed to acrothoracic barnacles, occur on the platyceratid gastropod Naticonema lineatum (Conrad) from the Middle Devonian Hamilton Group of western New York and rarely in specimens as old as the Early Devonian. These latter are the oldest known acrothoracid borings are in the fossil record. The borings are consistently developed as laterally compressed, inequilateral pouches exclusively on these gastropods, commonly as dense infestations.

Naticonema shells yielding borings typically occur associated with partially articulated qrinoid remains, and they are sometimes found attached to crinoids in a manner similar to coprophagous Platyceras. In addition to barnacle borings, Naticonema shells often bear thin encrustations of bryozoans which are usually perforated by these borings but sometimes also overgrow them. Barnacles bored live hosts; gastropods prevented shell penetration by producing cyst‐like secondary secretions of calcite beneath acrothoracid boreholes.

The relative antiquity of these borings and their association with coprophagous platyceratids makes their discovery particularly significant in revealing aspects of the early ecology of barnacles. Attachment to the host commensal gastropods was one of the first successful life modes of these crustaceans prior to their later diversification to other habitats. Mississippian and Pennsylvanian occurrences of similarly bored gastropods demonstrate continuity of the barnacle‐gastropod‐crinoid ecological association from the Middle to Late Paleozoic.  相似文献   

9.
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5 years) and old (>6 years) shell and rock substrate reefs. Using crab traps, gill‐nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5 m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.  相似文献   

10.
Summary The distribution and scavenging habits of the two most abundant lysianassid amphipods in McMurdo Sound differ markedly. Orchomene plebs lives primarily in deep water (>100 m), where planktonic and benthic food is sparser and scavenging events are less common and predictable than in shallower water. Orchomene plebs is common in shallow areas (<100 m) only under the Ross Ice Shelf and along the western McMurdo Sound. Here Weddell seals frequent tidal cracks in which they discard carrion and defecate; otherwise food is scarce. Orchomene pinguides lives on shallow (<10 m) wave-cut benches that are rich in food along the eastern McMurdo Sound. They, along with other omnivorous invertebrates which scavenge the food-rich eastern sound benches, are rare from shallow water along the western sound. The eastern benches are bathed by dense plankton blooms and harbor a high biomass of benthic diatoms and invertebrates. Scavenging events there were observed throughout the year. Orchomene plebs is larger and more motile, and came to laboratory carrion and baited field traps more rapidly and in greater numbers than O. pinguides. The crop contents of O. plebs contained only amorphous organic matter that suggested a scavenging habit. Crops of O. pinguides contained not only amorphous organic matter but also invertebrate prey, especially planktonic copepods that impact the bottom during winter.  相似文献   

11.
《Palaeoworld》2015,24(4):479-496
The morphology of the pseudoplanktonic crinoid Traumatocrinus from the early Late Triassic (Carnian) Xiaowa Formation of Guanling County (South China, Guizhou Province) is described based on articulated and disarticulated material. Juvenile individuals of less than 10 mm crown height with 20 isotomously branching arms prove the encrinid ancestry of the family Traumatocrinidae. However, even the smallest individuals have five large interradials. Endotomous branching commences at crowns of slightly more than 10 mm at the outer arms of the rays. All brachial articulations are ligamentary (granosyzygies). The assignment of the Chinese material to one of the nominal species of Traumatocrinus is still left open. The diagnosis of the genus Traumatocrinus is emended. Traumatocrinus lived attached to driftwood and was widespread across the Palaeo-Tethys. In contrast to its benthic encrinid ancestors, Traumatocrinus fixed its distal column with countless anastomosing radicular cirri to its substrate, preferentially to the ends of the driftwood logs. Depending on the state of the hypothesized mutable collagene tissue, the columns are preserved in straight positions or curved like a rope. Crowns are preserved in star position with radially splayed arms or in lateral bell position with the cup disrupted in interbrachial position. As usual in black shales, the exposed upper sides of the crinoids are in a more or less progressive state of decomposition whereas the embedded lower sides are intact.  相似文献   

12.
Taphonomic information is examined to evaluate the early history of connective tissues in the Crinoidea. The pattern of stalk segmentation of Middle and Late Ordovician crinoids is consistent with the two-ligament (intercolumnal and through-going ligaments) pattern present in living isocrinid crinoids and interpreted for fossil isocrinids, holocrinids, and Lower Mississippian crinoids. A single rhombiferan was also examined; its taphonomic pattern is also indicative of this style of tissue organization. Furthermore, the taphonomy of all Middle and Late Ordovician crinoids may reflect that they lacked discretely organized muscles between arm brachials, which is consistent with the hypothesis that muscles evolved as a connective tissue between plates only once within the Crinoidea, during the Early Devonian. These data indicate that the two-ligament organization of the stalk is a primitive feature among the Crinoidea and perhaps even among stalked echinoderms. Therefore, the autotomy function of this column-tissue organization among living crinoids is an exaptation. On the other hand, discretely organized muscles as connective tissue in crinoid arms is a derived trait that first appeared during the middle Paleozoic; this adaptation proved very successful for the advanced cladid crinoids.  相似文献   

13.
1. Alternative states are a widely recorded phenomenon in shallow lakes, which may shift between turbid‐ and clear‐water conditions. Here, we investigate whether such shifts in a tropical floodplain pond may be related to the effect of the flood pulse regime on the community structures of fish and macrophytes. 2. Using a long‐term data set, we demonstrate how benthic fish migration together with colonisation by submerged plants affected the transition from a turbid to a macrophyte‐dominated state in a floodplain pond without top‐down control. 3. In our study, the turbid state occurred mostly during low water phases and was largely characterised by high values for the biomass of benthic fish, chlorophyll‐a and total phosphorous. 4. During the period of rising water levels, the migration of benthic fish out of the pond occurs simultaneously with the establishment of submerged plants, while water turbidity decreases along with phytoplankton and nutrient concentrations, inducing a clear‐water phase. However, when submerged plants are absent and fish migration is low, a transient state is generated. 5. We suggest that, in contrast to temperate ponds and shallow lakes, where the main driving mechanisms establishing alternative states are related to cascading effects via the food chain, in tropical ponds and shallow lakes it is resuspension of sediments by benthic fish that plays the most significant role in establishing alternative states. However, the effect of the flood pulse regime plays an important role in the temporal dynamics of fish community structure by controlling benthic fish migration.  相似文献   

14.
Feeding arms carrying coelomic extensions of the theca are thought to be unique to crinoids among stemmed echinoderms. However, a new two-armed echinoderm from the earliest Middle Cambrian of Spain displays a highly unexpected morphology. X-ray microtomographic analysis of its arms shows they are polyplated in their proximal part with a dorsal series of uniserial elements enclosing a large coelomic lumen. Distally, the arm transforms into the more standard biserial structure of a blastozoan brachiole. Phylogenetic analysis demonstrates that this taxon lies basal to rhombiferans as sister-group to pleurocystitid and glyptocystitid blastozoans, drawing those clades deep into the Cambrian. We demonstrate that Cambrian echinoderms show surprising variability in the way their appendages are constructed, and that the appendages of at least some blastozoans arose as direct outgrowths of the body in much the same way as the arms of crinoids.  相似文献   

15.
THE EARLY RADIATION AND PHYLOGENY OF ECHINODERMS   总被引:3,自引:0,他引:3  
1. Living echinoderms are characterized by an extensive water vascular system developed from the larval left hydrocoel, a complex, multi-plated endoskeleton with stereom structure, and pentamery. Fossil evidence shows that stereom evolved before pentamery, but both were acquired during the Lower Cambrian. 2. Cladistic analysis of Lower Cambrian genera reveals very few characters in common between carpoids and true echinoderms, and that the split between them was the first fundamental evolutionary dichotomy within the Dexiothetica. 3. Helicoplacoids are stem group echinoderms with spiral plating and three ambulacra arranged radially around a lateral mouth. They are the most primitive echinoderms and the first to show a radial arrangement of the water vascular and ambulacral systems. Unlike later echinoderms, their skeleton shows no dorsal/ventral (aboral/oral) differentiation. They were probably sedentary suspension feeders. 4. Camptostroma is the most primitive known pentaradiate echinoderm and, in our view, possibly a common ancestor of all living groups. It had a short conical dorsal (aboral) surface with imbricate plating, a ridged lateral wall and a slightly domed ventral (oral) surface with five curved ambulacra in a 2-1-2 arrangement inherited from the triradiate pattern of the helicoplacoids. Interambulacral areas bore epispires and the CD interambulacrum contained the anus, hydropore and/or gonopore. All parts of the theca had plates in at least two layers. 5. All other echinoderms belong to one of two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa. 6. Stromatocystites is the earliest known eleutherozoan and differs from Camptostroma in having a test with only one layer of plates and having lost the dorsal elongation. In Stromatocystites the dorsal surface is flat and the plating tesselate. Stromatocystites was an unattached, low-level suspension feeder. 7. The lepidocystoids are the earliest known pelmatozoans. They differ from Camptostroma in having an attached dorsal stalk which retained the primitive imbricate plating, and by developing erect feeding structures along the ambulacra. In Kinzercystis, the ambulacra are confined to the thecal surface and erect, biserial brachioles arise alternately on either side. Lepidocystis has a similar arrangement except that, the distal part of each ambulacrum extends beyond the edge of the theca as a free arm. 8. Pelmatozoans diverged more or less immediately into crinoids, with multiple free arms composed of uniserial plates, and cystoids sensu lato, which retained brachioles. Gogia (Lower to Middle Cambrian) is the most primitive known cystoid and differs from Kinzercystis principally in having all plating tesselate, while Echmatocrinus (Middle Cambrian) is the most primitive known crinoid and differs from Lepidocystis in lacking brachioles and in having more than five free arms with uniserial plates. 9. Post Lower Cambrian differentiation of pelmatozoan groups proceeded rapidly, exploiting the primitive suspension-feeding mode of life. Maximum morphological diversity was reached in the Ordovician, but thereafter crinoids progressively displaced cystoid groups and reached their peak diversity during the Carboniferous. The eleutherozoans were slower to diversify, but by the Arenig the earliest ‘sea-stars’ (in reality, advanced members of the eleutherozoan stem group) had reversed their living orientation and had begun to exploit a deposit-feeding mode of life. These in turn led to the ophiuroids, echinoids and holothuroids. 10. The basic echinoderm ambulacrum was already present in the helicoplacoids. It had biserial, alternate flooring plates and complexly plated sheets of cover plates on either side. The radial water vessel lay in the floor of the ambulacrum, external to the body cavity, and gave rise ventrally to short, lateral branches (fore-runners of tube feet) that were used to open the cover plate sheets, and dorsally was connected to internal compensation sacs which acted as fluid reservoirs (and were preadapted for a role in gaseous exchange). Plating on the cover plate sheets was organized and reflected the positions of the lateral branches from the radial water vessel. In Camptostroma, the cover plate sheets had biserially aligned rows of cover plates associated with the lateral branches. 11. Brachioles arose by extension of the lateral branches of the radial water vessel and associated serially aligned cover plates found in Camptostroma. They bear a single alternate series of cover plates. In Lepidocystis the ambulacra extended beyond the edge of the oral surface as true arms. Brachial plates of arms are homologues of primary ambulacral flooring plates, and arms bear multiple series of cover plates. Uniserial ambulacral plating is a derived condition and evolved independently in crinoids, paracrinoids and isorophid edrioasteroids. Pinnules in crinoids arose independently in inadunates and camerates by a progressively more unequal branching of the arms. Thus all parts of the subvective system in crinoids are internally homologous, whereas in cystoids, brachioles and arms (or ambulacra) are not homologous structures. 12. The position of the hydropore is the best reference point in orientating echinoderms. Carpenter's system of identifying ambulacra by letters, arranged clock-wise in oral view with the A ambulacrum opposite the hydropore, is consistent in all echinoderm classes. In all Lower Cambrian pentaradiate echinoderms the anus, gonopore and hydropore lie in the CD interambulacrum and this is accepted as the primitive arrangement. In helicoplacoids we tentatively suggest that the A ambulacrum spiralled down from the mouth while the two ambulacra that spiralled up represent the B + C and D + E ambulacra combined. 13. The pelmatozoan stem arose from a polyplated stalk, via a meric stem to a true column with holomeric (single piece) columnals. This happened independently in the crinoids and the cystoids. 14. Our analysis of echinoderm phylogeny leads us to recommend the following changes to the higher level classification of echinoderms: The phylum Echinodermata includes only those groups with radial symmetry superimposed upon a fundamental larval asymmetry. It has a stem group that contains the triradiate helicoplacoids and a crown group to which all other (pentaradiate) echinoderms belong. The crown group contains two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa, and the Pelmatozoa contains two superclasses, the Crinoidea which are extant and the Cystoidea, which are extinct.  相似文献   

16.
The barnacles (Cirripedia Thoracica) collected by the Viking expedition in chemobiotic benthic communities of Arctic Ocean-Nyegga area in Norwegian Sea and Håkon Mosby Mud Volcano area in the Barents Sea are investigated. The species (Weltnerium nymphocola in Håkon Mosby Mud Volcano area and Hamatoscalpellum hamatum in Nyegga area) that were found are common inhabitants of the Barents and Norwegian sea benthic communities. The absence of obligatory barnacle fauna that was revealed in investigated chemobiotic benthic communities of the Arctic Ocean shows they are similar to corresponding communities of the Atlantic Ocean, while the specific obligatory barnacle fauna is noted for chemobiotic benthic communities of the Pacific and Indian oceans.  相似文献   

17.
Columns of the articulate crinoids Millericrinus and Apiocrinites from the Upper Jurassic (Upper Callovian) Zohar and Matmor formations of the Negev Desert of Israel display abundant encrusting organisms of about ten species, as well as diverse trace fossils produced by endobionts. Pluricolumnals were colonized by epi- and endobiontic organisms both during life and post-mortem. Skeletonized encrusting organisms include abundant ostreid bivalves (which evidently colonized both live and dead crinoid columnals), two types of serpulid worms, encrusting foraminifera, three species of bryozoans, and small encrusting sclerosponges. Several types of borings are present: Trypanites (possibly produced by sipunculids), Gastrochaenolites (crypts of boring lithophagid bivalves), elliptical barnacle? borings, and channel-like annelid? borings. In addition, approximately 16% of the pluricolumnals display circular parabolic embedment pits assignable to the ichnogenus Tremichnus. They are associated with substantial deformation of the containing columnals and were probably the work of host-specific ectoparasitic organisms. Discovery of Tremichnus on Jurassic crinoids extends the range of this trace by almost 100 million years, providing evidence for one of the longest-ranging host-parasite interactions documented thus far (over 200 million years). The relationship of epibionts to the Jurassic crinoids thus ranged from simple utilization of dead hard substrate to probable opportunistic commensalism in forms that colonized the live upright stems, as in some oysters, through host-specific parasitism in the case of Tremichnus.  相似文献   

18.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

19.
Extant brachiopods and stalked crinoids are found together in the deeper waters of the Caribbean Sea. Analogous brachiopod/crinoid associations have been reported from diverse palaeoenvironments in the Neogene of the region. Studied examples include the Pleistocene of Jamaica (deeper water fore reef), and the Miocene of Jamaica (island slope chalks), Barbados (accretionary prism) and Carriacou (turbiditic siliciclastic shelf). Comparison with analogous modern environments indicates deposition in 150+m water depth. This association has now been extended back into the Late Oligocene. Crinoids and brachiopods both occur in the Antigua Formation of Antigua; both occur high in the formation, implying deeper water in this retrograde succession. They have received little attention from systematists, although the brachiopods Cistellarcula dubia Cooper and Tichosina foresti Cooper have previously been described from the Antigua Formation; to these, we add Cistellarcula sp., Argyrotheca sp. and Tichosina sp. At Half Moon Bay in southeast Antigua, high in the Antigua Formation, we have found columnals of isocrinid crinoids (cf. Isocrinus sp.) associated with rare brachiopods (Terebratulina sp.) in island slope deposits. These taxa provide independent evidence for the deeper water aspect of this part of the Antigua Formation, in beds that also yield large, thin‐walled fossil sponges.  相似文献   

20.
Abstract. We have explored the process by which crinoids increase arm number as they grow. Two hypotheses have been proposed: (1) arm autotomy with subsequent bifurcation and regeneration of a pair of arms, and (2) growth of a pinnule into an additional arm. We have traced the development of Oxycomanthus japonicus for about a year after fertilization and provide the first confirmation that the number of arms increases by autotomy, bifurcation, and subsequent regeneration of a pair of arms. The next such addition tends to occur at some distance from the previous pair. Thus, increase of arm number takes place in such a manner that the density of the arms remains relatively constant, and an efficient filtration fan for feeding is maintained. Although arm autotomy in crinoids has been considered to occur only as a response to physical or chemical disturbance, the present results suggest that autotomy also occurs as a specific, intrinsically programmed event during normal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号