首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Hybrid plasmids were constructed by combining in vitro the Escherichia coli plasmid pGA22, which carries the genes determining resistance to kanamycin, tetracycline, chloramphenicol and ampicillin, with the cryptic plasmids, pCG1 and pCG2, of Corynebacterium glutamicum. The hybrid plasmids were introduced into C. glutamicum and E. coli and replicated in both hosts. They expressed all the E. coli resistance phenotypes except ampicillin resistance in C. glutamicum. The levels of antibiotic inactivating enzymes encoded on these plasmids were about four to ten times lower in C. glutamicum than in E. coli. Despite the lack of expression of ampicillin resistance, -lactamase activity was detected in C. glutamicum carrying hybrid plasmids.  相似文献   

3.
Dihydrodipicolinate synthase (DHDPS) catalyses the first reaction of the (S)-lysine biosynthesis pathway in bacteria and plants. The hypothetical gene for dihydrodipicolinate synthase (dapA) of Thermoanaerobacter tengcongensis was found in a cluster containing several genes of the diaminopimelate lysine–synthesis pathway. The dapA gene was cloned in Escherichia coli, DHDPS was subsequently produced and purified to homogeneity. The T. tengcongensis DHDPS was found to be thermostable (T 0.5 = 3 h at 90°C). The specific condensation of pyruvate and (S)-aspartate-β -semialdehyde was catalyzed optimally at 80°C at pH 8.0. Enzyme kinetics were determined at 60°C, as close as possible to in vivo conditions. The established kinetic parameters were in the same range as for example E. coli dihydrodipicolinate synthase. The specific activity of the T. tengcongensis DHDPS was relatively high even at 30°C. Like most dihydrodipicolinate synthases known at present, the DHDPS of T. tengcongensis seems to be a tetramer. A structural model reveals that the active site is well conserved. The binding site of the allosteric inhibitor lysine appears not to be conserved, which agrees with the fact that the DHDPS of T. tengcongensis is not inhibited by lysine under physiological conditions.  相似文献   

4.
Genome rearrangement is an increasingly important technique to facilitate the understanding of genome functions. A Cre/loxP-mediated deletion system for large-scale genome rearrangements in Corynebacterium glutamicum was developed. By comparative analysis of C. glutamicum R and C. glutamicum 13032 genomes, distinct 14.5-kb and 56-kb regions not essential for cell survival were identified and targeted for deletion. By homologous recombination, loxP sites were integrated at each end of the target region. Deletions between the two chromosomal loxP sites in the presence of Cre recombinase were highly efficient. Accurate deletion was observed in all 96 Cre-expressing strains tested. These deletions represent the largest genomic excisions in C. glutamicum reported to date. Despite the loss of 11 and 58 predicted ORF(s), respectively, upon the deletion of the14.5-kb and 56-kb regions, the cells still exhibited normal growth under standard laboratory conditions. Based on the precision of its deletion, the Cre/loxP system provides a new, efficient genome rearrangement technique for studying C. glutamicum.  相似文献   

5.
The clinical isolate Corynebacterium xerosis M82B carries the 50-kb R-plasmid pTP10 that confers resistance to the antibiotics chloramphenicol, kanamycin, erythromycin, and tetracycline. A detailed restriction map of pTP10 was constructed by cloning and analyzing restriction fragments of pTP10 in Escherichia coli . The resistance determinants of pTP10 were located by studying the phenotype of the recombinant plasmids in E. coli and Corynebacterium glutamicum . Restriction patterns of fragments encoding the kanamycin and erythromycin resistances revealed striking similarity to the kanamycin resistance of transposon Tn903 and the erythromycin resistance on plasmid pNG2 from Corynebacterium diphtheriae, respectively. Expression of the resistance determinants in E. coli and C. glutamicum ATCC 13032 led to high resistance levels in both strains, with the exception of the tetracycline resistance gene, which could be expressed only in C. glutamicum. Furthermore, the erythromycin resistance gene was found to be located on a transposable element which is functional in C. glutamicum strains.  相似文献   

6.
7.
8.
The biomass of Corynebacterium glutamicum was treated with poly(amic acid) to improve the biosorption of Basic Blue 3 (BB3) from aqueous solution. The grafting of poly(amic acid) onto the biomass surface increased the density of the carboxyl groups. The UV-spectrum revealed that strong acidic (pH  2) and basic conditions (pH  11) resulted in the precipitation of BB3. Therefore, pH edge experiments were conducted only within the range 3–10; these results indicated that electrostatic attraction between carboxyl groups of C. glutamicum and BB3 dye cations was favored under alkaline conditions. From the Langmuir model, poly(amic acid)-modified biomass gave a maximum uptake of 173.6 mg/g at pH 9, compared to 52.8 mg/g by the raw biomass. The biosorption kinetics was found to be fast; with equilibrium attained within 10 min. The increase in the ionic strength strongly affected the uptake of BB3 for both forms of C. glutamicum.  相似文献   

9.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

10.
Systematic studies of Ceratitis (Tephritidae) fruit flies using molecular (i.e., COI, ND6, and period genes) and morphological (plus host-use characters) data have recently challenged the monophyly of the subgenera Ceratitis (Ceratitis) and Ceratitis (Pterandrus). In this paper, we report on the phylogenetic utility of three single-copy nuclear gene regions (two non-overlapping fragments of the carbamoylphosphate synthetase, CPS, locus of CAD, and a fragment of tango) within these taxa and investigate evolutionary relationships based on a concatenated ca. 3.4 kb data set that includes the six protein encoding gene regions. Results indicate that the CAD and tango genes provide useful phylogenetic signal within the taxa and are compatible with the previously studied genes. The two subgenera, as currently classified, are not monophyletic. Our molecular phylogenetic analyses support a revised classification in which (1) the subgenus C. (Pterandrus) comprises two lineages called A and B, (2) the C. (Pterandrus) B species should be included in C. (Ceratitis), and (3) the newly defined subgenera C. (Pterandrus) (=Pterandrus section A) and C. (Ceratitis) [=C. (Ceratitis) + C. (Pterandrus) section B] are reciprocally monophyletic.  相似文献   

11.
A simple and random genome deletion method combining insertion sequence (IS) element IS31831 and the Cre/loxP excision system generated 42 Corynebacterium glutamicum mutants (0.2–186 kb). A total of 393.6 kb (11.9% of C. glutamicum R genome) coding for 331 genes was confirmed to be nonessential under standard laboratory conditions. The deletion strains, generated using only two vectors, varied not only in their lengths but also the location of the deletion along the C. glutamicum R genome. By comparing and analyzing the generated deletion strains, identification of nonessential genes, the roles of genes of hitherto unknown function, and gene–gene interactions can be easily and efficiently determined. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
To provide a framework for studies to understand the contribution of SALT OVERLY SENSITIVE1 (SOS1) to salt tolerance in Thellungiella halophila, we sequenced and annotated a 193-kb T. halophila BAC containing a putative SOS1 locus (ThSOS1) and compared the sequence to the orthologous 146-kb region of the genome of its salt-sensitive relative, Arabidopsis thaliana. Overall, the two sequences were colinear, but three major expansion/contraction regions in T. halophila were found to contain five Long Terminal Repeat retrotransposons, MuDR DNA transposons and intergenic sequences that contribute to the 47.8-kb size variation in this region of the genome. Twenty-seven genes were annotated in the T. halophila BAC including the putative ThSOS1 locus. ThSOS1 shares gene structure and sequence with A. thaliana SOS1 including 11 predicted transmembrane domains and a cyclic nucleotide-binding domain; however, different patterns of Simple Sequence Repeats were found within a 540-bp region upstream of SOS1 in the two species.  相似文献   

13.
14.
A 7.1 kb EcoRI fragment from Azospirillum brasilense, that hybridized with a probe carrying the ntrBC genes from Bradyrhizobium japonicum, was cloned. The nucleotide sequence of a 3.8 kb subfragment was established. This led to the identification of two open reading frames, encoding polypeptides of 401 and 481 amino acids, that were similar to NtrB and NtrC, respectively. A broad host range plasmid containing the putative Azospirillum ntrC gene was shown to restore nitrogen fixation under free-living conditions to a ntrC-Tn5 mutant of Azorhizobium caulinodans. Several Tn5 insertion mutants were isolated in the ntrBC coding region in A. brasilense. These mutants were prototrophic and Nif+. However, their nitrogenase activity was slightly lower than in the wild type and they were unable to grow on nitrate as sole nitrogen source. Under microaerobiosis and in the absence of ammonia, a nifA-lacZ fusion was expressed in the mutants at about 60% of the level in the wild type. In the presence of ammonia, the fusion was similarly expressed (60% of the maximum) both in the wild type and mutants. Addition of ammonia to a nitrogen-fixing culture of ntrBC mutants did not abolish nitrogenase activity, in contrast with the wild type. It thus appears that in Azospirillum the ntrBC genes are not essential for nitrogen fixation, although NtrC controls nifA expression to some extent. They are, however, required for the switch-off of nitrogenase activity.  相似文献   

15.
Mutants of Corynebacterium glutamicum that were unable to grow under mild alkaline pH conditions were isolated by mutagenesis. Strain AL-43 exhibiting the highest sensitivity to alkaline pH among the mutants was selected and used to clone a DNA fragment that could complement the phenotype. Sequencing and subcloning of the cloned 4.0-kb EcoRI DNA fragment showed that the Cgl1281 gene was responsible for the complementation. The deduced amino acid sequence of Cgl1281 was found to show significant sequence similarity with CzcD, a Me2+/H+(K+) antiporter, from Bacillus subtilis and also possess the features of the cation diffusion facilitator (CDF) family: the presence of 6 putative transmembrane segments and a signature sequence, indicating that the gene product is a member of the CDF family. Chromosomal disruption of the Cgl1281 rendered C. glutamicum cells sensitive to alkaline pH as well as cobalt, while expression of the gene from a plasmid restored alkali-tolerance to the wild-type level and also led to increased cobalt resistance. These results demonstrated that the putative transporter of the CDF family mediates resistance to cobalt and also plays a physiological role in alkaline pH tolerance in C. glutamicum.  相似文献   

16.
The HinfI restriction and modification genes were cloned on a 3.9-kb PstI fragment inserted into the PstI site of plasmid pBR322. Both genes are confined to an internal 2.3-kb BclI-AvaI subfragment. This subfragment was sequenced. Two large open reading frames (ORF's) are present. ORF1 codes for the methylase [predicted 359 amino acids (aa)] and ORF2 codes for the endonuclease (predicted 262 or 272 aa).  相似文献   

17.
A 3.8-kb fragment of chromosomal DNA of Geobacillus stearothermophilus V cloned in pSP72 (p1VH) confers resistance to potassium tellurite (K2TeO3) and to potassium tellurate (K2TeO4) when the encoded genes are expressed in Escherichia coli K-12. The nt sequence of the cloned fragment predicts three ORFs of 780, 399, and 600 bp, whose encoded protein products exhibit about 80% similarity with the SUMT methyltransferase and the BtuR protein of Bacillus megaterium, and with the UbiE methyltransferase of Bacillus anthracis A2012, respectively. In addition, E. coli/p1VH cells evolved dimethyl telluride, which was released into the headspace gas above liquid cultures when amended with K2TeO3 or with K2TeO4. After 48 h of growth in the presence of these compounds, a protein of about 25 kDa was found at a significantly higher level when crude extracts were analyzed by SDS-PAGE. The N-terminal amino acid (aa) sequence of this protein, obtained by Edman degradation, matched the deduced aa sequence predicted by the G. stearothermophilus V ubiE gene. This gene was amplified by PCR, subcloned in pET21b, and transformed into E. coli JM109(DE3). Interestingly, DMTe evolution occurred when these modified cells were grown in K2TeO4 – but not in K2TeO3 – amended media. These results may be indicative that the two Te oxyanions could be detoxified in the cell by different metabolic pathways.  相似文献   

18.
Summary The cloned isocitrate lyase structural gene of Aspergillus nidulans (acuD) was shown to hybridize under reduced stringency conditions to unique sequences in genomic DNA digests of the basidiomycete fungus Coprinus cinereus. A gene library of C. cinereus was constructed in the lambda replacement vector L47 and screened for sequences hybridizing to the A. nidulans gene. A recombinant phage was isolated which contained the hybridizing sequence on a 5.6-kb BamHI fragment. This fragment was subcloned into pUC13 to give plasmid pHIONA1 and shown to contain a functional C. cinereus isocitrate lyase gene (acu-7) by transformation of an acu-7 mutant. Direct selection for Acu+ transformants was not possible because of the toxicity of the acetate selection medium. Acu+ transformants were obtained as cotransformants by transforming an acu-7 trp-1 double mutant, having mutations in both the isocitrate lyase and tryptophan synthetase structural genes, with a plasmid containing the trp-1 gene and either pHIONA1 or the original lambda clone. Up to 47.5% of the selected Trp+ transformants were cotransformed to Acu+. A physical analysis of 40 Acu+ transformants showed that the acu-7 gene had integrated at non-homologous and often multiple sites in the genome. Meiotic stability of the integrated gene was demonstrated by genetic crosses.  相似文献   

19.
The genome of Corynebacterium glutamicum ATCC 13032 contains two genes, rpf1 and rpf2, encoding proteins with similarities to the essential resuscitation-promoting factor (Rpf) of Micrococcus luteus. Both the Rpf1 (20.4 kDa) and Rpf2 (40.3 kDa) proteins share the so-called Rpf motif, a highly conserved protein domain of approximately 70 amino acids, which is also present in Rpf-like proteins of other gram-positive bacteria with a high G+C content of the chromosomal DNA. Purification of the C. glutamicum Rpf2 protein from concentrated supernatants, SDS-PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified modified Rpf2 variants with increased or reduced mobility when compared with the calculated size of Rpf2. A Western blot-based enzyme immunoassay demonstrated glycosylation of the Rpf2 variants with higher molecular masses. Galactose and mannose were identified as two components of the oligosaccharide portion of the Rpf2 glycoprotein by capillary gas chromatography coupled to mass spectrometry. The Rpf2 protein was localized on the surface of C. glutamicum with the use of immuno-fluorescence microscopy. C. glutamicum strains with defined deletions in the rpf1 or rpf2 gene or simultaneous deletions in both rpf genes were constructed, indicating that the rpf genes are neither individually nor collectively essential for C. glutamicum. The C. glutamicum rpf double mutant displayed slower growth and a prolonged lag phase after transfer of long-stored cells into fresh medium. The addition of supernatant from exponentially growing cultures of the rpf double mutant, the wild type or C. glutamicum strains with increased expression of the rpf1 or rpf2 gene significantly reduced the lag phase of long-stored wild-type and rpf single mutant strains, but addition of purified His-tagged Rpf1 or Rpf2 did not. In contrast, the lag phase of the C. glutamicum rpf double mutant was not affected upon addition of these culture supernatants.  相似文献   

20.
The mt-rns gene of Cryphonectria parasitica is 9872 bp long and includes two group I and two group II introns. An analysis of intronic protein-encoding sequences revealed that LAGLIDADG ORFs, which usually are associated with group I introns, were transferred at least twice into group II introns. A plasmid-like mitochondrial element (plME) that appears in high amounts in previously mutagen-induced mit1 and mit2 hypovirulent mutants of the Ep155 standard virulent strain of C. parasitica was found to be derived from a short region of the mt-rns gene, including the exon 1 and most of the first intron. The plME is a 4.2-kb circular, multimeric DNA and an autonomously-replicating mtDNA fragment. Although sexual transmission experiments indicate that the plME does not directly cause hypovirulence, its emergence is one manifestation of the many complex molecular and genetic events that appear to underlie this phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号