首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbial degradative characteristics of butyl benzyl phthalate (BBP) were investigated by the Gordonia sp. strain MTCC 4818 isolated from creosote-contaminated soil. The test organism can utilize a number of phthalate esters as sole sources of carbon and energy, where BBP was totally degraded within 4 days under shake culture conditions. High performance liquid chromatography profile of the metabolites isolated from spent culture indicated the accumulation of two major products apart from phthalic acid (PA), which were characterized by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy as mono-n-butyl phthalate (MBuP) and monobenzyl phthalate (MBzP). Neither of the metabolites, MBuP, MBzP or PA, supported growth of the test organism, while in resting cell transformation, the monoesters were hydrolyzed to PA to a very minor extent, which was found to be a dead-end product in the degradation process. On the other hand, the test organism grew well on benzyl alcohol and butanol, the hydrolyzed products of BBP. The esterase(s) was found to be inducible in nature and can hydrolyze in vitro the seven different phthalate diesters tested to their corresponding monoesters irrespective of their support to the growth of the test organism.  相似文献   

2.
The present study describes the assimilation of phenanthrene by an aerobic bacterium, Ochrobactrum sp. strain PWTJD, isolated from municipal waste-contaminated soil sample utilizing phenanthrene as a sole source of carbon and energy. The isolate was identified as Ochrobactrum sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis. A combination of chromatographic analyses, oxygen uptake assay and enzymatic studies confirmed the degradation of phenanthrene by the strain PWTJD via 2-hydroxy-1-naphthoic acid, salicylic acid and catechol. The strain PWTJD could also utilize 2-hydroxy-1-naphthoic acid and salicylic acid, while the former was metabolized by a ferric-dependent meta-cleavage dioxygenase. In the lower pathway, salicylic acid was metabolized to catechol and was further degraded by catechol 2,3-dioxygenase to 2-hydroxymuconoaldehyde acid, ultimately leading to tricarboxylic acid cycle intermediates. This is the first report of the complete degradation of a polycyclic aromatic hydrocarbon molecule by Gram-negative Ochrobactrum sp. describing the involvement of the meta-cleavage pathway of 2-hydroxy-1-naphthoic acid in phenanthrene assimilation.  相似文献   

3.
Pseudomonas putida CSV86 metabolizes 1- and 2-methylnaphthalene through distinct catabolic and detoxification pathways. In spite of the similarity in the steps involved in the methylnaphthalene detoxification and the toluene side-chain hydroxylation pathways, the strain failed to utilize toluene or xylenes. However, it could grow on benzyl alcohol, 2- and 4-hydroxybenzyl alcohol. Metabolic studies suggest that the benzyl alcohol metabolism proceeds via the benzaldehyde, benzoate, and catechol ortho-cleavage pathway, in contrast to the well established catechol meta-cleavage pathway. Carbon source-dependent enzyme activity studies suggest that the degradation of aromatic alcohol involves two regulons. Aromatic alcohol induces the upper regulon, which codes for aromatic alcohol- and aromatic aldehyde-dehydrogenase and converts alcohol into acid. The aromatic acid so generated induces the specific lower regulon and is metabolized via either the ortho- or the meta-cleavage pathway. CSV86 cells transform 1- and 2-methylnaphthalene to 1- and 2-hydroxymethyl naphthalene, which are further converted to the respective naphthoic acids due to the basal level expression and broad substrate specificity of the upper regulon enzymes.  相似文献   

4.
Abstract a Micrococcus sp. isolated by isophthalate enrichment, utilized 8 of the 13 substituted benzoic acids tested as the sole source of carbon and energy. The organism degraded benzoic acid and anthranilic acid through the intermediate formation of catechol. While salicylate is metabolized through genetisic acid, p -hydroxybenzoic acid is degraded through protocatechuic acid. The organism grew well on isophthalate but failed to utilize phthalate and terphthalate. Catechol disoxygenase, gentisate dioxygenase and protocatechuate dioxygenase activities were shown in the cell-free extracts. Catechol and protocatechuate are further metabolized through an ortho -cleavage pathway.  相似文献   

5.
Pseudomonas sp. strain AP-3 grows on benzoate, p-hydroxybenzoate, protocatechuate, and 2-aminophenol as sole carbon and energy source. This strain converted benzoate and p-hydroxybenzoate to catechol and protocatechuate respectively, which were metabolized via the ortho-cleavage pathway. The enzymes responsible for these reactions were shown to be inducible. In contrast, strain AP-3 constitutively expresses the enzymes involved in the metabolism of 2-aminophenol.  相似文献   

6.
7.
Isolates able to grow on 3- or 4-hydroxybiphenyl (HB) as the sole carbon source were obtained by enrichment culture. The 3-HB degrader Pseudomonas sp. strain FH12 used an NADPH-dependent monooxygenase restricted to 3- and 3,3'-HBs to introduce an ortho-hydroxyl. The 4-HB degrader Pseudomonas sp. strain FH23 used either a mono- or dioxygenase to generate a 2,3-diphenolic substitution pattern which allowed meta-fission of the aromatic ring. By using 3-chlorocatechol to inhibit catechol dioxygenase activity, it was found that 2- and 3-HBs were converted by FH23 to 2,3-HB, whereas biphenyl and 4-HB were attacked by dioxygenation. 4-HB was metabolized to 2,3,4'-trihydroxybiphenyl. Neither organism attacked chlorinated HBs. The degradation of 3- and 4-HBs by these strains is therefore analogous to the metabolism of biphenyl, 2-HB, and naphthalene in the requirement for 2,3-catechol formation.  相似文献   

8.
Bacterial metabolism of hydroxylated biphenyls.   总被引:9,自引:6,他引:3       下载免费PDF全文
Isolates able to grow on 3- or 4-hydroxybiphenyl (HB) as the sole carbon source were obtained by enrichment culture. The 3-HB degrader Pseudomonas sp. strain FH12 used an NADPH-dependent monooxygenase restricted to 3- and 3,3'-HBs to introduce an ortho-hydroxyl. The 4-HB degrader Pseudomonas sp. strain FH23 used either a mono- or dioxygenase to generate a 2,3-diphenolic substitution pattern which allowed meta-fission of the aromatic ring. By using 3-chlorocatechol to inhibit catechol dioxygenase activity, it was found that 2- and 3-HBs were converted by FH23 to 2,3-HB, whereas biphenyl and 4-HB were attacked by dioxygenation. 4-HB was metabolized to 2,3,4'-trihydroxybiphenyl. Neither organism attacked chlorinated HBs. The degradation of 3- and 4-HBs by these strains is therefore analogous to the metabolism of biphenyl, 2-HB, and naphthalene in the requirement for 2,3-catechol formation.  相似文献   

9.
A strain of Pseudomonas putida capable of utilizing both stereoisomers of phenylglycine as the sole carbon and energy source was isolated from soil. No phenylglycine racemase was detected in cells grown on either stereoisomer. In an initial reaction each steroisomer of phenylglycine was transaminated yielding phenylglyoxylate which was further metabolized via benzaldehyde to benzoate. Subsequently, benzoate was further degraded via an ortho-cleavage of catechol.Abbreviation HPLC high-performance liquid chromatography  相似文献   

10.
Genes encoding an aniline dioxygenase of Frateuria sp. ANA-18, which metabolizes aniline via the ortho-cleavage pathway of catechol, were cloned and named tdn genes. The tdn genes were located on the chromosomal DNA of this bacterium and weren't clustered with catechol-degrading gene clusters. These results show that the ANA-18 aniline-degrading gene cluster is constructionally different from Pseudomonas tdn and Acinetobacter atd gene clusters, which degrade aniline via the meta-cleavage pathway of catechol and organize catechol-metabolic genes in the gene clusters. When cloned tdnQTA1A2B genes were expressed in Eschherichia coli, aniline dioxygenase activity was observed. Southern blot analysis revealed that homologues of the tdnA1A2B genes didn't exist in strain ANA-18. Disruption of the tdnA1A2 genes gave the parent strain ANA-18 a defect in aniline metabolism. On the basis of these results, we concluded that only the cloned tdn genes function as genes encoding aniline dioxygenase in strain ANA-18 although this bacterium had two catechol-degrading gene clusters.  相似文献   

11.
12.
Quinaldine catabolism was investigated with the bacterial strain Arthrobacter sp., which is able to grow aerobically in a mineral salt medium with quinaldine as sole source of carbon, nitrogen and energy. The following degradation products of quinaldine were isolated from the culture fluid and identified: 1H-4-oxoquinaldine, N-acetylisatic acid, N-acetylanthranilic acid, anthranilic acid, 3-hydroxy-N-acetylanthranilic acid and catechol. 3-Hydroxy-N-acetylanthranilic acid was not further metabolized by this organism. A degradation pathway is proposed.  相似文献   

13.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

14.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

15.
Rhodococcus rhodochrous strain CTM co-metabolized 2-methylaniline and some of its chlorinated isomers in the presence of ethanol as additional carbon source. Degradation of 2-methylaniline proceeded via 3-methylcatechol, which was metabolized mainly by meta-cleavage. In the case of 3-chloro-2-methylaniline, however, only a small proportion (about 10%) was subjected to meta-cleavage; the chlorinated meta-cleavage product was accumulated in the culture fluid as a dead-end metabolite. In contrast, 4-chloro-2-methylaniline was degraded via ortho-cleavage exclusively. Enzyme assays showed the presence of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase as inducible enzymes in strain CTM. Extended cultivation of strain CTM with 2-methylaniline and 3-chloro-2-methylaniline yielded mutants, including R. rhodochrous strain CTM2, that had lost catechol 2,3-dioxygenase activity; these mutants degraded the aromatic amines exclusively via the ortho-cleavage pathway. DNA hybridization experiments using a gene probe revealed the loss of the catechol 2,3-dioxygenase gene from strain CTM2.  相似文献   

16.
Abstract Pseudomonas putida strain CLB 250 (DSM 5232) utilized 2-bromo-, 2-chloro- and 2-fluorobenzoate as sole source of carbon and energy. Degradation is suggested to be initiated by a dioxygenase liberating halide in the first catabolic step. After decarboxylation and rearomatization catechol is produced as a central metabolite which is degraded via the ortho-pathway. After inhibition of ring cleavage activities with 3-chlorocatechol, 2-chlorobenzoate was transformed to catechol in nearly stoichiometric amounts. Other ortho -substituted benzoates like anthranilate and 2-methoxybenzoate seem to be metabolized via the same route.  相似文献   

17.
Pseudomonas putida strain CLB 250 (DSM 5232) utilized 2-bromo-, 2-chloro- and 2-fluorobenzoate as sole source of carbon and energy. Degradation is suggested to be initiated by a dioxygenase liberating halide in the first catabolic step. After decarboxylation and rearomatization catechol is produced as a central metabolite which is degraded via the ortho-pathway. After inhibition of ring cleavage activities with 3-chlorocatechol, 2-chlorobenzoate was transformed to catechol in nearly stoichiometric amounts. Other ortho-substituted benzoates like anthranilate and 2-methoxybenzoate seem to be metabolized via the same route.  相似文献   

18.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

19.
Isolations of 3-chlorobenzoate (3CBA)-degrading aerobic bacteria under reduced O2 partial pressures yielded organisms which metabolized 3CBA via the gentisate or the protocatechuate pathway rather than via the catechol route. The 3CBA metabolism of one of these isolates, L6, which was identified as an Alcaligenes species, was studied in more detail. Resting-cell suspensions of L6 pregrown on 3CBA oxidized all known aromatic intermediates of both the gentisate and the protocatechuate pathways. Neither growth on nor respiration of catechol could be detected. Chloride production from 3CBA by L6 was strictly oxygen dependent. Cell-free extracts of 3CBA-grown L6 cells exhibited no catechol dioxygenase activity but possessed protocatechuate 3,4-dioxygenase, gentisate dioxygenase, and maleylpyruvate isomerase activities instead. In continuous culture with 3CBA as the sole growth substrate, strain L6 demonstrated an increased oxygen affinity with decreasing steady-state oxygen concentrations.  相似文献   

20.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-borne genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号