首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The dsRNA protein kinase PKR: virus and cell control   总被引:12,自引:0,他引:12  
García MA  Meurs EF  Esteban M 《Biochimie》2007,89(6-7):799-811
  相似文献   

4.
5.
6.
Protein kinase regulated by RNA (PKR) plays critical roles in cell growth and apoptosis and is implicated as a potential pathogenic factor of Alzheimer's, Parkinson's, and Huntington's diseases. Here we report that this proapoptotic kinase is also involved in Fanconi anemia (FA), a disease characterized by bone marrow (BM) failure and leukemia. We have used a BM extract to show that three FA proteins, FANCA, FANCC, and FANCG, functionally interact with the PKR kinase, which in turn regulates translational control. By using a combined immunoprecipitation and reconstituted kinase assay, in which an active PKR kinase complex was captured from a normal cell extract, we demonstrated functional interactions between the FA proteins and the PKR kinase. In primary human BM cells, mutations in the FANCA, FANCC, and FANCG genes markedly increase the amount of PKR bound to FANCC, and this PKR accumulation is correlated with elevated PKR activation and hypersensitivity of BM progenitor cells to growth repression mediated by the inhibitory cytokines interferon-gamma and tumor necrosis factor-alpha. Specific inhibition of PKR by 2-aminopurine in these FA BM cells attenuates PKR activation and apoptosis induction. In lymphoblasts derived from an FA-C patient, overexpression of a dominant negative mutant PKR (PKRK296R) suppressed PKR activation and apoptosis induced by interferon-gamma and tumor necrosis factor-alpha. Furthermore, by using genetically matched wild-type and PKR-null cells, we demonstrated that forced expression of a patient-derived FA-C mutant (FANCCL554P) augmented double-stranded RNA-induced PKR activation and cell death. Thus, inappropriate activation of PKR as a consequence of certain FA mutations might play a role in bone marrow failure that frequently occurred in FA.  相似文献   

7.
The E3L proteins encoded by vaccinia virus bind double-stranded RNA and mediate interferon resistance, promote virus growth, and impair virus-mediated apoptosis. Among the cellular proteins implicated as targets of E3L is the protein kinase regulated by RNA (PKR). To test in human cells the role of PKR in conferring the E3L mutant phenotype, HeLa cells stably deficient in PKR generated by an RNA interference-silencing strategy were compared to parental and control knockdown cells following infection with either an E3L deletion mutant (ΔE3L) or wild-type (WT) virus. The growth yields of WT virus were comparable in PKR-sufficient and -deficient cells. By contrast, the single-cycle yield of ΔE3L virus was increased by nearly 2 log10 in PKR-deficient cells over the impaired growth in PKR-sufficient cells. Furthermore, virus-induced apoptosis characteristic of the ΔE3L mutant in PKR-sufficient cells was effectively abolished in PKR-deficient HeLa cells. The viral protein synthesis pattern was altered in ΔE3L-infected PKR-sufficient cells, characterized by an inhibition of late viral protein expression, whereas in PKR-deficient cells, late protein accumulation was restored. Phosphorylation of both PKR and the α subunit of protein synthesis initiation factor 2 (eIF-2α) was elevated severalfold in ΔE3L-infected PKR-sufficient, but not PKR-deficient, cells. WT virus did not significantly increase PKR or eIF-2α phosphorylation in either PKR-sufficient or -deficient cells, both of which supported efficient WT viral protein production. Finally, apoptosis induced by infection of PKR-sufficient HeLa cells with ΔE3L virus was blocked by a caspase antagonist, but mutant virus growth was not rescued, suggesting that translation inhibition rather than apoptosis activation is a principal factor limiting virus growth.  相似文献   

8.
9.
10.
11.
The interferon-induced RNA-dependent protein kinase (PKR) is postulated to have an important regulatory role in the synthesis of viral and cellular proteins. Activation of the enzyme requires the presence of a suitable activator RNA and is accompanied by an autophosphorylation of PKR. Active PKR phosphorylates the alpha subunit of protein synthesis eukaryotic initiation factor 2, resulting in an inhibition of translation initiation. The mechanism of autophosphorylation is not well understood. Here we present evidence that the autophosphorylation of human PKR can involve intermolecular phosphorylation events, i.e., one PKR protein molecule phosphorylating a second PKR molecule. Both wild-type PKR and the point mutant PKR(K296R) synthesized in vitro were phosphorylated, even though PKR(K296R) was deficient in kinase catalytic activity. Phosphorylation of both wild-type PKR and PKR(K296R) was inhibited in the presence of 2-aminopurine. Furthermore, purified human recombinant PKR(K296R) was a substrate for the purified wild-type human PKR kinase. This intermolecular phosphorylation of mutant PKR(K296R) by wild-type PKR was dependent on double-stranded RNA and was inhibited by 2-aminopurine. Finally, PKR mRNA was capable of mediating an autoactivation of wild-type PKR kinase autophosphorylation in vitro.  相似文献   

12.
Gil J  Esteban M  Roth D 《Biochemistry》2000,39(51):16016-16025
Regulation of eIF2alpha phosphorylation is critical to the maintenance of cellular homeostasis, and eIF2alpha kinases are subject to complex and multidimensional controls. A cellular 67 kDa glycoprotein (p67) has been proposed to have an important role in regulating the activity of eIF2alpha kinases including the interferon-induced, dsRNA-stimulated protein kinase PKR. To dissect p67-PKR interactions and evaluate their significance in vivo, we have used a vaccinia virus (VV) expression system that successfully mimics PKR control pathways. Recombinant VV were constructed that constitutively express p67 and inducibly express PKR in BSC-40 cells. Stable expression of p67 reduced the PKR-mediated antiviral response and apoptosis. These effects correlated with decreased eIF2alpha phosphorylation, with rescue of PKR-mediated inhibition of protein synthesis, and with partial inhibition of PKR-triggered activation of NF-kappaB. The direct interaction between PKR and p67 was suggested by in vivo and in vitro analyses. These data demonstrate that in vivo p67 is an important modulator of PKR-mediated signal transduction pathways and may provide a useful tool to dissect the relative contributions of PKR to cell growth and stress response.  相似文献   

13.
Earlier we reported that NF-kappaB is activated by protein kinase R (PKR) in herpes simplex virus 1-infected cells. Here we report that in PKR(-/-) cells the yields of wild-type virus are 10-fold higher than in PKR(+/+) cells. In cells lacking NF-kappaB p50 (nfkb1), p65 (relA), or both p50 and p65, the yields of virus were reduced 10-fold. Neither wild-type nor mutant cells undergo apoptosis following infection with wild-type virus. Whereas PKR(+/+) and NF-kappaB(+/+) control cell lines undergo apoptosis induced by the d120 (Deltaalpha4) mutant of HSV-1, the mutant PKR(-/-) and NF-kappaB(-/-) cell lines were resistant. The evidence suggests that the stress-induced apoptosis resulting from d120 infection requires activation of NF-kappaB and that this proapoptotic pathway is blocked in cells in which NF-kappaB is not activated or absent. Activation of NF-kappaB in the course of viral infection may have dual roles of attempting to curtain viral replication by rendering the cell susceptible to apoptosis induced by the virus and by inducing the synthesis of proteins that enhance viral replication.  相似文献   

14.
15.
NO synthase 2 (NOS2) is induced in airway epithelium by influenza virus infection. NOS2 induction late in the course of viral infection may occur in response to IFN-gamma, but early in infection gene expression may be induced by the viral replicative intermediate dsRNA through the dsRNA-activated protein kinase (PKR). Since PKR activates signaling pathways important in NOS2 gene induction, we determined whether PKR is a component in the signal transduction pathway leading to NOS2 gene expression after viral infection of airway epithelium. We show that NOS2 gene expression in human airway epithelial cells occurs in response to influenza A virus or synthetic dsRNA. Furthermore, dsRNA leads to rapid activation of PKR, followed by activation of signaling components including NF-kappaB and IFN regulatory factor 1. NOS2 expression is markedly diminished and IFN regulatory factor 1 and NF-kappaB activation are substantially impaired in PKR null cells. Strikingly, NOS2 induction in response to LPS is abolished in PKR null cells, confirming a central role for PKR in the general signaling pathway to NOS2.  相似文献   

16.
17.
18.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

19.
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号