首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The folding process for newly synthesized, multispanning membrane proteins in the endoplasmic reticulum (ER) is largely unknown. Here, we describe early folding events of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC-transporter family. In vitro translation of CFTR in the presence of semipermeabilized cells allowed us to investigate this protein during nascent chain elongation. We found that CFTR folds mostly during synthesis as determined by protease susceptibility. C-terminally truncated constructs showed that individual CFTR domains formed well-defined structures independent of C-terminal parts. We conclude that the multidomain protein CFTR folds mostly cotranslationally, domain by domain.  相似文献   

2.
3.
4.
Specificity of cotranslational amino-terminal processing of proteins in yeast   总被引:17,自引:0,他引:17  
Polypeptides synthesized in the cytoplasm of eukaryotes are generally initiated with methionine, but N-terminal methionine is absent from most mature proteins. Many proteins are also N alpha-acetylated. The removal of N-terminal methionine and N alpha-acetylation are catalyzed by two enzymes during translation. The substrate preferences of the methionine aminopeptidase (EC 3.4.11.x) and N alpha-acetyltransferase (EC 2.3.1.x) have been partially inferred from the distribution of amino-terminal residues and/or mutations found for appropriate mature proteins, but with some contradictions. In this study, a synthetic gene corresponding to the mature amino acid sequence of the plant protein thaumatin, expressed in yeast as a nonexported protein, i.e., lacking a signal peptide, has been used to delineate the specificities of these enzymes with respect to the penultimate amino acid. Site-directed mutagenesis, employing synthetic oligonucleotides, was utilized to construct genes encoding each of the 20 amino acids following the initiation methionine codon, and each protein derivative was isolated and characterized with respect to its amino-terminal structure. All four possible N-terminal variants--those with and without methionine and those with and without N alpha-acetylation--were obtained. These results define the specificity of these enzymes in situ and suggest that the nature of the penultimate amino-terminal residue is the major determinant of their selectivity.  相似文献   

5.
Transgenic tobacco plants expressing three different forms of Arabidopsis plant peptide deformylase ( At DEF1.1, At DEF1.2 and At DEF2; EC 3.5.1.88) were evaluated for resistance to actinonin, a naturally occurring peptide deformylase inhibitor. Over-expression of either AtDEF1.2 or AtDEF2 resulted in resistance to actinonin, but over-expression of AtDEF1.1 did not. Immunological analyses demonstrated that At DEF1.2 and At DEF2 enzymes were present in both stromal and thylakoid fractions in chloroplasts, but At DEF1.1 was localized to mitochondria. The highest enzyme activity was associated with stromal At DEF2, which was approximately 180-fold greater than the level of endogenous activity in the host plant. Resistance to actinonin cosegregated with kanamycin resistance in Atdef1.2-D and Atdef2-D transgenic plants. Here, we demonstrate that the combination of plant peptide deformylase and peptide deformylase inhibitors may represent a native gene selectable marker system for chloroplast and nuclear transformation vectors, and also suggest plant peptide deformylase as a potential broad-spectrum herbicide target.  相似文献   

6.

Introduction

Polycystic liver disease is asymptomatic in 95% of patients. In the remaining 5% it causes symptoms due to the local mass effect of the polycystic liver. We describe the case of a patient who presented with symptoms of a pleural effusion and was also found to have polycystic liver disease. The effusion recurred despite repeated efforts at drainage and only resolved following surgical debridement of the cystic liver.

Case presentation

A 50-year-old Caucasian woman presented with a two-week history of increasing dyspnoea. An examination revealed a large right pleural effusion and gross hepatomegaly. An ultrasound confirmed a large polycystic liver and diagnostic thoracocentesis revealed an exudate, which was sterile to culture. The pleural effusion proved refractory to drainage and our patient underwent surgery to deroof the main hepatic cysts in an attempt to reduce the pressure on her right diaphragm. The histology was compatible with that of polycystic liver disease. No evidence of malignancy was found. After surgery, our patient had no recurrence of her effusion and, to date, has remained asymptomatic from her polycystic liver disease.

Conclusion

The case in this report illustrates that an exudative pleural effusion is a rare complication of polycystic liver disease. We feel that the mechanical effects of a large polycystic liver, and subsequent disruption of sub-diaphragmatic capillaries, resulted in a persistent exudative pleural effusion. Thus, surgical debulking of the hepatic cysts is required to manage these effusions.  相似文献   

7.
The signal recognition particle (SRP)-dependent targeting pathway facilitates rapid, efficient delivery of the ribosome-nascent chain complex (RNC) to the protein translocation channel. We test whether the SRP receptor (SR) locates a vacant protein translocation channel by interacting with the yeast Sec61 and Ssh1 translocons. Surprisingly, the slow growth and cotranslational translocation defects caused by deletion of the transmembrane (TM) span of yeast SRbeta (SRbeta-DeltaTM) are exaggerated when the SSH1 gene is disrupted. Disruption of the SBH2 gene, which encodes the beta subunit of the Ssh1p complex, likewise causes a growth defect when combined with SRbeta-DeltaTM. Cotranslational translocation defects in the ssh1DeltaSRbeta-DeltaTM mutant are explained by slow and inefficient in vivo gating of translocons by RNCs. A critical function for translocation channel beta subunits in the SR-channel interaction is supported by the observation that simultaneous deletion of Sbh1p and Sbh2p causes a defect in the cotranslational targeting pathway that is similar to the translocation defect caused by deletion of either subunit of the SR.  相似文献   

8.
《Cell》2022,185(12):2035-2056.e33
  1. Download : Download high-res image (223KB)
  2. Download : Download full-size image
  相似文献   

9.
Guanosine triphosphatases (GTPases) comprise a superfamily of proteins that provide molecular switches to regulate numerous cellular processes. The "GTPase switch" paradigm, in which a GTPase acts as a bimodal switch that is turned "on" and "off" by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases. Recent work on a pair of GTPases in the signal recognition particle (SRP) pathway has revealed a distinct mode of GTPase regulation. Instead of the classical GTPase switch, the two GTPases in the SRP and SRP receptor undergo a series of conformational changes during their dimerization and reciprocal activation. Each conformational rearrangement provides a point at which these GTPases can communicate with and respond to their upstream and downstream biological cues, thus ensuring the spatial and temporal precision of all the molecular events in the SRP pathway. We suggest that the SRP and SRP receptor represent an emerging class of "multistate" regulatory GTPases uniquely suited to provide exquisite control over complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion.  相似文献   

10.
11.
12.
Role of the code redundancy in determining cotranslational protein folding   总被引:1,自引:0,他引:1  
It has been demonstrated earlier in our laboratory that rare codon clusters can determine the boundaries of the polypeptide chain fragments of the same secondary structure type during the co-translational protein folding. According to this data, co-translational protein folding can occur under condition of a correlation between the frequency of codon choice in mRNAs and the relative abundance of their isoaccepting tRNAs. The alterations in the spectrum and concentrations of the isoaccepting tRNAs in different cells were demonstrated by many authors. The existence of a mechanism of the coordinate regulation of the levels (activities) of the isoaccepting tRNAs, corresponding aminoacyl-tRNA synthetases and mRNAs predominantly translated at a given moment of time can be suggested. Such a mechanism can ensure the needed accuracy of the protein folding process. Analysis of gene sequences of various pro- and eukaryotic organisms carried out in the present work revealed that the codon usage frequency spectra of simultaneously synthesized proteins are similar. The relative appearance of the most rare and frequent codons in investigated gene sequences displays a high degree of conservatism. It has also been found that structural-homologous proteins from different organisms (cytochromes c, myoglobins) have very similar codon frequency distribution profiles. This property retains despite the significant variations in the codon usage spectra in the investigated gene sequences. The data obtained indicate that the codon distribution in mRNAs whose diversity is mainly conditioned by the genetic code redundance is a program that determines translational rates of different mRNA parts thus controlling the spatial folding of the synthesized peptide chain.  相似文献   

13.
The tyrosine kinase receptors for the neurotrophins (Trk) are a family of transmembrane receptors that regulate the differentiation and survival of different neuronal populations. Neurotrophin binding to Trk leads to the activation of several signalling pathways including a rapid, but moderate, increase in intracellular calcium levels. We have previously described the role of calcium and its sensor protein, calmodulin, in Trk-activated intracellular pathways. Here we demonstrate that calmodulin is able to precipitate TrkA from PC12 cell lysates. Using recombinant GST-fusion proteins containing the complete intracellular domain of TrkA, or fragments of this region, we show that calmodulin binds directly to the C-terminal domain of TrkA in a Ca2+-dependent manner. We have also co-immunoprecipitated endogenous Trk and calmodulin in primary cultures of cortical neurones. Moreover, we provide evidence that calmodulin is involved in the regulation of TrkA processing in PC12 cells. Calmodulin inhibition results in the generation of a TrkA-derived p41 fragment from the cytosolic portion of the protein. This fragment is autophosphorylated in tyrosines and can recruit PLCgamma and Shc adaptor proteins. These results suggest that calmodulin binding to Trk may be important for the regulation of Trk intracellular localization and cleavage.  相似文献   

14.
15.
Lipids play an important role as risk or protective factors in Alzheimer's disease, which is characterized by amyloid plaques composed of aggregated amyloid-beta. Plasmalogens are major brain lipids and controversially discussed to be altered in Alzheimer's disease (AD) and whether changes in plasmalogens are cause or consequence of AD pathology. Here, we reveal a new physiological function of the amyloid precursor protein (APP) in plasmalogen metabolism. The APP intracellular domain was found in vivo and in vitro to increase the expression of the alkyl-dihydroxyacetonephosphate-synthase (AGPS), a rate limiting enzyme in plasmalogen synthesis. Alterations in APP dependent changes of AGPS expression result in reduced protein and plasmalogen levels. Under the pathological situation of AD, increased amyloid-beta level lead to increased reactive oxidative species production, reduced AGPS protein and plasmalogen level. Accordingly, phosphatidylethanol plasmalogen was decreased in the frontal cortex of AD compared to age matched controls. Our findings elucidate that plasmalogens are decreased as a consequence of AD and regulated by APP processing under physiological conditions.  相似文献   

16.
Altered production of Aβ (amyloid-β peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1-APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP-GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aβ, whereas knockdown of GULP1 suppressed APP CTFs and Aβ production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aβ production.  相似文献   

17.
Nanos (Nos) protein is required in the posterior of the Drosophila embryo to promote abdominal development, but must be excluded from the anterior to permit head and thorax development [1,2]. Spatial restriction of Nos is accomplished by selective translation of the 4% of nos mRNA localized to the posterior pole and translational repression of the remaining unlocalized mRNA [3-5]. Repression is mediated by a 90-nucleotide translational control element (TCE) in the nos 3' untranslated region (UTR) and the TCE-binding protein Smaug [4,6,7], but the molecular mechanism is unknown. We used sucrose density gradient sedimentation to ascertain whether unlocalized nos mRNA is excluded from polysomes and therefore repressed during translational initiation. Surprisingly, a significant percentage of nos mRNA was found to be associated with polysomes, even in mutants in which all nos mRNA is unlocalized and repressed. Using a regulated Drosophila cell-free translation system, we showed that ribosomes contained within these polysomes are capable of elongation in vitro, under conditions in which synthesis of Nos protein is repressed. Thus, synthesis of ectopic Nos protein is inhibited by a novel regulatory mechanism that does not involve a stable arrest of the translation cycle.  相似文献   

18.
Aminoacyl-tRNA synthetases (ARSs) play an essential role in the protein synthesis by catalyzing an attachment of their cognate amino acids to tRNAs. Unlike their prokaryotic counterparts, ARSs in higher eukaryotes form a multiaminoacyl-tRNA synthetase complex (MARS), consisting of the subset of ARS polypeptides and three auxiliary proteins. The intriguing feature of MARS complex is the presence of only nine out of twenty ARSs, specific for Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met, and Pro, regardless of the organism, cell, or tissue types. Although existence of MARSs complex in higher eukaryotes has been already known for more than four decades, its functional significance remains elusive. We found that seven of the nine corresponding amino acids (Arg, Gln, Glu, Ile, Leu, Lys, and Met) together with Ala form a predictor of the protein α-helicity. Remarkably, all amino acids (besides Ala) in the predictor have the highest possible number of side-chain rotamers. Therefore, compositional bias of a typical α-helix can contribute to the helix''s stability by increasing the entropy of the folded state. It also appears that position-specific α-helical propensity, specifically periodic alternation of charged and hydrophobic residues in the helices, may well be provided by the structural organization of the complex. Considering characteristics of MARS complex from the perspective of the α-helicity, we hypothesize that specific composition and structure of the complex represents a functional mechanism for coordination of translation with the fast and correct folding of amphiphilic α-helices.  相似文献   

19.
Polycystic ovary syndrome (PCOS) is a very common endocrinopathy of uncertain aetiology in which the most consistent biochemical abnormality is hypersecretion of androgens. In this review, evidence is presented to support the view that a primary abnormality of ovarian androgen biosynthesis provides the basis for the syndrome. PCOS is a familiar disorder and we demonstrate, in molecular genetic studies, that CYP11a, the gene coding for P450 side chain cleavage, is a key susceptibility locus for development of hyperandrogenism.  相似文献   

20.
Targeting of proteins to the endoplasmic reticulum (ER) occurs cotranslationally necessitating the interaction of the signal recognition particle (SRP) and the translocon with the ribosome. Biochemical and structural studies implicate ribosomal protein Rpl25p as a major ribosome interaction site for both these factors. Here we characterize an RPL25GFP fusion, which behaves as a dominant mutant leading to defects in co- but not posttranslational translocation in vivo. In these cells, ribosomes still interact with ER membrane and the translocon, but are defective in binding SRP. Overexpression of SRP can restore ribosome binding of SRP, but only partially rescues growth and translocation defects. Our results indicate that Rpl25p plays a critical role in the recruitment of SRP to the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号