首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affinity chromatography of the anterior pituitary D2-dopamine receptor   总被引:1,自引:0,他引:1  
The D2-dopamine receptor from bovine anterior pituitary has been solubilized with digitonin and purified approximately 1000-fold by affinity chromatography on a new affinity support. This support consists of a (carboxymethylene)oximino derivative of the D2-selective antagonist spiperone (CMOS) covalently attached to Sepharose 4B through a long side chain. The interaction of the solubilized receptor activity with the affinity gel was biospecific. Dopaminergic drugs blocked adsorption of solubilized receptor activity to the CMOS-Sepharose with the appropriate D2-dopaminergic potency and stereoselectivity. For agonists, (-)-N-n-propylnorapomorphine greater than 2-amino-6,7-dihydroxytetrahydronaphthalene approximately equal to apomorphine greater than dopamine, whereas for antagonists (+)-butaclamol much greater than (-)-butaclamol. The same D2-dopaminergic specificity was observed for elution of receptor activity from the gel. To observe eluted receptor binding activity, reconstitution of the eluted material into phospholipid vesicles was necessary. Typically, 70-80% of the solubilized receptor was adsorbed by CMOS-Sepharose, and 40-50% of the adsorbed activity could be recovered after reconstitution of the eluted material. The overall recovery of D2-receptor activity from bovine anterior pituitary membranes was 12-15% with specific binding activity of approximately 150 pmol/mg. The reconstituted affinity-purified receptor bound ligands with the expected D2-dopaminergic specificity, stereoselectivity, and rank order of potency.  相似文献   

2.
The D1 dopamine receptor from rat corpus striatum has been purified 200-250-fold by using a newly developed biospecific affinity chromatography matrix based on a derivative of the D1 selective antagonist SCH 23390. This compound, (RS)-5-(4-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benz azepin-7-o l (SCH 39111), possesses high affinity for the D1 receptor and, when immobilized on Sepharose 6B through an extended spacer arm, was able to adsorb digitonin-solubilized D1 receptors. The interaction between the solubilized receptor and the affinity matrix was biospecific. Adsorption of receptor activity could be blocked in a stereoselective fashion [SCH 23390 greater than SCH 23388; (+)-butaclamol greater than (-)-butaclamol]. The elution of [3H]SCH 23390 activity from the gel demonstrated similar stereoselectivity for antagonist ligands. Agonists eluted receptor activity with a rank order of potency consistent with that of a D1 receptor [apomorphine greater than dopamine greater than (-)-epinephrine much greater than LY 171555 greater than serotonin]. SCH 39111-Sepharose absorbed 75-85% of the soluble receptor activity, and after the gel was washed extensively, 35-55% of the absorbed receptor activity could be eluted with 100 microM (+)-butaclamol with specific activities ranging from 250 to 450 pmol/mg of protein. The affinity-purified receptor retains the ligand binding characteristics of a D1 dopamine receptor. This affinity chromatography procedure should prove valuable in the isolation and molecular characterization of the D1 dopamine receptor.  相似文献   

3.
G L Orr  J W Gole  H J Notman  R G Downer 《Life sciences》1987,41(25):2705-2715
Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 microM and at 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 microM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 microM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D2-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 microM. Other dopamine agonists (apomorphine, SKF-82526, SKF-38393) have no stimulatory effects. The octopamine-sensitive AC is inhibited by a variety of antagonists known to affect octopamine and dopamine receptors, with the following order of potency: mianserin greater than phentolamine greater than cyproheptadine greater than piflutixol greater than cis-flupentixol greater than SCH-23390 greater than (+)-butaclamol greater than SKF-83566 greater than SCH-23388 greater than sulpiride greater than spiperone greater than haloperidol. The dopamine-sensitive AC is inhibited by the same compounds with the following order of potency: piflutixol greater than cis-flupentixol greater than (+)-butaclamol greater than spiperone greater than or equal to SCH-23390 greater than cyproheptadine greater than SKF-83566 greater than SCH 23388 greater than mianserin greater than phentolamine greater than sulpiride greater than haloperidol. With the exception of mianserin, 3H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D1- and D2-dopamine receptors.  相似文献   

4.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

5.
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptors, solubilized from bovine striatal membranes using a cholic acid-NaCl combination, exhibited the typical pharmacological characteristics of both agonist and antagonist binding. The rank order potency of the agonists and antagonists to displace [3H]spiroperidol binding was the same as that observed with membrane-bound receptors. Computer-assisted analysis of the [3H]spiroperidol/agonist competition curves revealed the retention of high- and low-affinity states of the D2 receptor in the solubilized preparations and the proportions of receptor subpopulations in the two affinity states were similar to those reported in membrane. Guanine nucleotide almost completely converted the high-affinity sites to low-affinity sites for the agonists. The binding of the high-affinity agonist [3H]N-n-propylnorapomorphine ([3H]NPA) was clearly demonstrated in the solubilized preparations for the first time. Addition of guanylyl-imidodiphosphate completely abolished the [3H]NPA binding. When the solubilized receptors were subjected to diethylaminoethyl-Sephacel chromatography, the dopaminergic binding sites eluted in two distinct peaks, showing six- to sevenfold purification of the receptors in the major peak. Binding studies performed on both peaks indicated that the receptor subpopulation present in the first peak may have a larger proportion of high-affinity binding sites than the second peak. The solubilized preparation also showed high-affinity binding of [35S]guanosine-5'-(gamma-thio)triphosphate, a result suggesting the presence of guanine nucleotide binding sites, which may interact with the solubilized D2 receptors. These data are consistent with the retention of the D2 receptor-guanine nucleotide regulatory protein complex in the solubilized preparations and should provide a suitable model system to study the receptor-effector interactions.  相似文献   

6.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

7.
J Arnt 《Life sciences》1985,37(8):717-723
The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.  相似文献   

8.
A novel affinity purification of D-1 dopamine receptors from rat striatum   总被引:2,自引:0,他引:2  
When rat striatal membranes were pretreated with the sulfhydryl (-SH) modifying reagent, N-ethylmaleimide (NEM) in the presence of the D-1-specific agonist, SKF R-38393, the D-1 dopamine receptor was completely protected from NEM-mediated inactivation. The D-1 receptors, solubilized from these membranes with 1% sodium cholate in the presence of phospholipids, bound with high efficiency (greater than 90%) to mercury-agarose columns. The bound receptors were eluted from the affinity column with a -SH reducing agent, beta-mercaptoethanol. Upon removal of beta-mercaptoethanol from the eluted fractions by inclusion chromatography, the receptor was reconstituted into phospholipid vesicles and assayed for ligand binding activity. The affinity purified receptor exhibited saturable and specific binding of the D-1-specific ligand 125I-SCH 23982, with a Kd of 1.6 nM comparable to that measured in intact membranes and solubilized extracts. The binding capacity of these receptors for 125I-SCH 23982 was 11,000 pmol/mg protein, representing greater than an 8000-fold purification over the starting membrane preparation. The purity of the affinity eluted receptors was estimated to be 78%. The purified receptors retained the pharmacological properties of membrane-bound receptors, including the ability to distinguish between active and inactive enantiomers of specific dopaminergic antagonists. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining revealed the presence of two major polypeptides of 74 and 54 kDa. These two polypeptides were absent in those affinity eluted fractions which did not display 125I-SCH 23982-binding activity and also were not detected in preparations obtained from membranes which were NEM-treated in the absence of D-1-specific agonist. The molecular weights of these polypeptides were similar to those of membrane-bound D-1 receptors, when labeled with a D-1-specific photo-affinity ligand, 125I-8-hydroxy-3-methyl-1-(4-azidphenyl)-2,3,4,5-tetrahydro-1H-3-b enzazepine. These two polypeptides may represent glycosylated and deglycosylated forms of the D-1 dopamine receptor.  相似文献   

9.
Specific binding of [3H]N-propylnorapomorphine [( 3H]NPA) to 3,4-dihydroxyphenylethylamine (dopamine) D-2 receptors was investigated in rat striatum in vitro. For various dopamine receptor substances, the rank order of potency to inhibit [3H]NPA binding was spiroperidol greater than or equal to NPA greater than LY 171555 greater than SCH 23390 greater than SKF 38393. A single high-affinity binding site was found in membranes prepared in either Tris-citrate buffer or imidazole buffer; the affinity constants were 0.11 and 0.76 nM, respectively. The number of receptors (33 pmol/g wet weight) was independent of whether the membranes were prepared in Tris-citrate buffer or imidazole buffer and was similar to the number of receptors estimated by [3H]spiroperidol binding to dopamine receptors. Irradiation inactivation of frozen whole rat striata showed a monoexponential loss of [3H]NPA binding sites without a change in the binding affinity. The target size of the [3H]NPA binding site was 81,000 daltons, which shows that the functional molecular entity to bind the dopamine D-2 agonist was smaller than the molecular entity to bind the dopamine D-2 antagonist [3H]spiroperidol (target size, 137,000 daltons).  相似文献   

10.
An approximate 140-fold purification of the A1 adenosine receptor of bovine cerebral cortex has been obtained via affinity chromatography. The affinity column consists of Affi-Gel 10 coupled through an amide linkage to XAC, a high-affinity A1 adenosine receptor antagonist. As assessed by [3H]XAC binding, bovine brain membranes solubilized with the detergent CHAPS had a specific binding activity of 1.1 pmol/mg protein. Interaction of solubilized A1 adenosine receptors with the XAC-Affi-Gel was biospecific and 30% of the receptor activity was bound by the gel. Demonstration of [3H]XAC binding in the material eluted from the column with R-PIA required insertion of receptor into phospholipid vesicles. The specific activity of the affinity column purified receptor was 146 +/- 22 pmol/mg protein with typically 5-15% of the bound receptor recovered. The purified receptor displayed high-affinity antagonist binding and bound agonists with the potency order expected of the bovine brain A1 adenosine receptor: R-PIA greater than S-PIA greater than NECA. In purified preparations, the photoaffinity probe [125I]PAPAXAC-SANPAH specifically labelled a protein of molecular mass 38,000 which has previously been shown to be the A1 adenosine receptor binding subunit.  相似文献   

11.
D2 dopamine receptor from bovine striatum was solubilized in a form sensitive to guanine nucleotides, by means of a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). The presence of sodium ion markedly increased the solubilization yield. Treatment of the membranes with 10 mM CHAPS and 0.72 M NaCl solubilized 26% of the stereospecific [3H]spiperone binding sites in the original membrane preparations. The solubilized [3H]spiperone binding sites possessed characteristics of the D2 dopamine receptor: (a) localization of the site in the striatum but not in the cerebellum; (b) high affinity to nanomolar concentrations of [3H]spiperone; (c) displacement of [3H]spiperone binding by nanomolar concentrations of neuroleptics, but only by micromolar concentrations of dopamine and apomorphine; (d) equal activity of various dopamine agonists and antagonists in the soluble and membrane preparations. Guanine nucleotides decreased the affinity of the solubilized D2 dopamine receptor for dopamine agonists, but not for antagonists. The solubilized receptor complex was eluted in Sepharose CL-4B column chromatography as a large molecule, with a Stokes radius of approximately 90 A. These results indicate that the complex between the D2 dopamine receptor and GTP binding protein remains intact throughout the solubilization procedure.  相似文献   

12.
A Sidhu 《Biochemistry》1988,27(24):8768-8776
The D-1 dopamine receptor was extracted from rat striatal membranes with sodium cholate and NaCl in the presence of a specific agonist and phospholipids. The soluble receptor then was reconstituted into phospholipid vesicles by further addition of phospholipids prior to detergent removal. Of the total membrane receptors, up to 48% were extracted and 36% were reconstituted into phospholipid vesicles. Yields were greatly reduced if the agonist was omitted or replaced with an antagonist. The solubilized and reconstituted D-1 receptors retained the pharmacological properties of the membrane-bound receptors, including the ability to discriminate between active and inactive enantiomers of specific agonists and antagonists. In this regard, the affinity of the reconstituted receptors for the D-1 specific antagonist 125I SCH 23982 was similar to that of the membrane-bound receptors with a Kd of 1.5 nM. Both the soluble and reconstituted forms of the D-1 receptor exhibited two affinity states for the D-1 specific agonist SK&F R-38393. In contrast to the low proportion of the receptors that had a high affinity for the agonists in striatal membranes (less than 6%), there was a dramatic increase following solubilization (22%) and reconstitution (40%). Similar results were obtained by using dopamine; the proportion of high-affinity sites increased from 4% (membrane-bound) to 48% (reconstituted) of the total receptor population. These high-affinity sites were coupled to G proteins, as guanyl nucleotides completely abolished them. Addition of guanyl nucleotides prior to solubilization or to reconstitution, however, had no effect on the subsequent yield of the reconstituted receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract

We have examined the ability of various antiestrogens (AE's) to compete with 3H-spiroperidol for binding to membrane preparations from striatal tissue and anterior pituitary glands of immature female rats in order to determine the affinity of binding of AE's to D-2 dopamine receptors. Scatchard analyses revealed the presence of a single class of high affinity receptor sites in both the striatum and pituitary with a dissociation constant (Kd) of 0.33 nM and 0.40 nM, respectively, for the dopamine antagonist spiroperidol. The AE's tamoxifen, 4-hydroxy-tamoxifen (TAM-OH), CI-628, LY 117018, and a structurally related compound t-butyl-phenoxyethyl diethylamine (BPEA) were all able to compete with spiroperidol for binding to D-2 receptors and demonstrated relative binding affinities of 0.4-0.06%, with spiroperidol set at 100%. Dopamine displayed a lower affinity, 0.01%. Estradiol failed to compete with spiroperidol for D-2 receptor binding while the non-steroidal estrogen diethylstilbestrol (DES) showed very week competition. For the lipophilic AE's, alteration of the level of their non-specific binding greatly affected their relative affinities in these competitive binding assays. The amine side chain on an aromatic ring appears to be a critical structural requirement in allowing the AE's to bind to the dopamine receptor. The relatively low affinity of AE's for the dopamine receptor and the high degree of interaction of AE's with other proteins suggest that only limited occupancy of D-2 receptors by AE's is likely in vivo.  相似文献   

14.
O E Brodde 《Life sciences》1982,31(4):289-306
Substantial evidence has accumulated that in certain vascular beds dopamine produces its relaxant effect through stimulation of specific dopamine receptors. The goal of this review is to describe several in vitro models (perfused mesenteric vessels of the dog; renal, mesenteric, splenic, coronary and cerebral arterial strips of rabbits, dogs and cats; perfused kidney of the rat) recently developed to demonstrate such specific relaxations induced by dopamine and dopaminomimetics. On these models studies on structure-activity relationship for activation of the dopamine receptor resulted in the following order of potency for agonists: SK&F 38393 (partial agonist) greater than epinine greater than A-6, 7-DTN greater than or equal to dopamine greater than N, N-di-n-propyl-dopamine (partial agonist) greater than apomorphine (partial agonist). The dopamine receptor antagonists (+)-butaclamol, cis-alpha-flupenthixol, metoclopramide, droperidol and bulbocapnine were found to competitively antagonize dopamine induced relaxation. In addition, in two isolated organ systems (rabbit mesenteric artery, rat perfused kidney) stereospecificity of the vascular dopamine receptor was demonstrated with the isomers of butaclamol. With the development of several in vitro models demonstrating a specific antagonism against dopamine induced relaxation an important requirement for definition of a specific dopamine receptor if fulfilled according to classical pharmacological criteria. Thus, there can be do doubt on the existence of post-synaptic dopamine receptors mediating vasodilation in certain vascular tissues.  相似文献   

15.
Purification of the D-2 dopamine receptor from bovine striatum   总被引:2,自引:0,他引:2  
The D-2 dopamine receptor has been purified 21500 fold from bovine striatal membranes. Solubilized receptor preparation was partially purified by affinity chromatography on a haloperidol adsorbent followed by gel filtration on a Sephacryl S-300 column. The fractions eluted from this column which contained the ligand binding activity were further chromatographed on wheat germ agglutinin conjugated to Sepharose. The resulting receptor preparation displays a major polypeptide band of an apparent molecular weight of 92 kDa, and exhibits a specific binding activity of 2490 pmol spiperone per mg protein. This purified receptor preparation can reabsorb specifically to the haloperidol affinity column indicating that the 92 kDa polypeptide represents the ligand binding unit of the D-2 dopamine receptor.  相似文献   

16.
L Y Li  Z M Zhang  Y F Su  W D Watkins  K J Chang 《Life sciences》1992,51(15):1177-1185
Opioid receptor was solubilized from rat brain membranes with a mixture of the detergents CHAPS and digitonin in the presence of protease inhibitors and 1 M NaCl. The solubilized receptor bound mu-opioid agonists and antagonists with affinities similar to those of native membrane receptor. The affinity of solubilized receptor for the agonist PL017 was greatly reduced by GTP gamma S, suggesting the receptor is still associated with G-protein. The solubilized material was passed through an opioid antagonist (10cd) affinity column and a wheat germ agglutinin column, set up in series, to obtain a partially purified receptor preparation. This partially purified material bound mu-agonist with low affinity and the binding affinity was no longer affected by GTP gamma S. The partially purified receptor was further purified by repeating the affinity and lectin chromatography with smaller size column. Binding of opioid antagonist [3H]diprenorphine to the partially or purified receptors was dependent upon the presence of sodium ions. The purified receptor showed saturable and stereospecific binding for opioid ligands, was predominantly of the mu-type, and exhibited as a diffuse band with a medium molecular mass of 62 kD upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The average specific binding activity of the purified receptor was 18.8 +/- 2.3 pmol/micrograms protein, a value close to the theoretical estimation.  相似文献   

17.
Studies were undertaken to evaluate the effects of estradiol and prolactin on striatal dopamine receptor activity. Dopamine receptors were quantified in partially purified striatal membranes by equilibrium binding using [3H]spiroperidol. When we investigated whether the D-2 dopamine receptor activity changes during the estrous cycle, the results suggest an increase in dopamine receptor density in diestrous, without modifications in the affinity. The finding that in ovariectomized rats the dopamine receptor binding parameters remained unchanged, suggests that gonadal steroids are not essential in the mechanism of action of this receptor. Results of activity of D-2 dopamine receptors showing that hyperprolactinemia fails to increase the number of these receptors do not support the hypothesis that circulating prolactin regulates the activity of these striatal dopamine receptors. Administration of estradiol benzoate (250 micrograms/kg per day) to hyperprolactinemic rats, by s.c. injection, significantly decreased both the density and the affinity of the striatal dopamine receptors. The present data indicate that, although prolactin does not seem to modify the activity of striatal dopamine receptors, it could modulate the estrogen-induced hypersensitivity of these receptors.  相似文献   

18.
The interactions of dopaminergic agonists and antagonists with binding sites in bovine anterior pituitary membranes have been investigated with radioligand-binding techniques and computer-modeling procedures. 3H-labeled agonist binding is stereospecific, reversible, saturable, and of high affinity. The rank order of catecholamines, phenothiazines, and related drugs in competing for 3H-agonist binding is indicative of interactions with a D-2 dopamine receptor. Both agonist/3H-agonist and antagonist/3H-agonist competition curves are monophasic and noncooperative (nH = 1) with computer analysis indicating a single class of binding sites. Specific 3H-agonist binding can be completely inhibited by guanine nucleotides. GppNHp us the most potent nucleotide followed by GTP and GDP which are equipotent. The equilibrium binding capacity for 3H-labeled antagonists is twice that for 3H-agonists. Unlabeled antagonists inhibit 3H-antagonist binding competitively and exhibit antagonist/3H-antagonist competition curves which model best to a state of homogeneous affinity. In contrast, unlabeled agonists inhibit 3H-antagonist binding in a heterogeneous fashion displaying multiphasic (nH less than 1) competition curves which can be resolved into high and low affinity binding sites. In the presence of saturating concentrations of guanine nucleotides, however, the agonist/3H-antagonist curves model best to a single affinity state which is identical with the low affinity state seen in control curves. The binding data can be explained by postulating two states of the D-2 dopamine receptor, inducible by agonists but not antagonists and modulated by guanine nucleotides.  相似文献   

19.
A series of mutant avian beta-adrenergic receptors with progressively truncated carboxyl termini have been expressed in insect and mammalian cells. Removal of 18-124 amino acid residues caused multiple phenotypic changes in the receptor. Membranes from cells that expressed the truncated receptors displayed elevated basal (2- to 3-fold) and agonist-stimulated adenylylcyclase activities. Adenylylcyclase activity in these membranes also displayed greater stimulation in response to partial agonists. Activity was also markedly stimulated by beta-adrenergic ligands that are usually considered to be antagonists (alprenolol, greater than 4-fold; propranolol, approximately 2-fold). Wild type receptor did not mediate a response to these classical antagonists. After purification and reconstitution with Gs, the truncated receptors did not appear to be more active than the wild type. Guanine nucleotides modulated the affinity of agonist for the truncated receptors, whereas the affinity of agonist for the wild type receptor was not altered by guanine nucleotides. The truncated receptors were solubilized from the membrane more efficiently and were more susceptible to amino-terminal proteolysis than was the wild type protein. These results suggest interaction of the carboxyl terminus of the avian beta-adrenergic receptor with cellular regulatory or structural elements.  相似文献   

20.
Specific D2 binding in rat striatum was characterized and then the effects of chronic disruption of dopaminergic activity on antagonist and agonist binding to these sites were studied. D2 receptors were defined as those sites capable of binding [3H]spiperone in the presence of cinanserin, a 5-HT2 antagonist, but not in the presence of (+)-butaclamol, a D2 and 5-HT2 blocker. Saturation, competition, and kinetic analyses suggested that D2 receptors are a homogeneous population exhibiting more complex interactions with agonists than antagonists. Antagonist binding was monophasic and guanine nucleotide-insensitive whereas agonist binding was biphasic and guanine nucleotide-sensitive. D2 receptor density was elevated by more than 40% following dopamine depletion by 6-hydroxydopamine or chronic receptor blockade by haloperidol. However neither treatment altered the affinities or magnitudes of the high- and low-affinity components associated with agonist binding to the D2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号