首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C3b receptor of human erythrocytes is known to act as a cofactor for the cleavage of the complement protein C3b by the serine proteinase C3b/C4b Ina. The same cofactor activity is shown to be present on human tonsil B-lymphocytes. The cofactor activity of the C3b receptor can be assayed, on intact cells or in solubilized extracts of cells, by determining the rate of C3b cleavage in the presence of fixed concentrations of C3b and of C3b/C4b Ina. This assay method was used to compare the characteristics and relative quantities of C3b receptors on erythrocytes and lymphocytes. The cofactor activities associated with these two cell types resemble each other, but are distinct from the serum cofactor proteins, C4bp and Factor H, in antigenicity and in pH- and ionic-strength-dependence, and are distinct from Factor H in substrate specificity. Assay of cofactor activity in intact cells indicates that there are about 80-fold more receptors per cell on the lymphocyte surface than on erythrocytes. Assays with cells made permeable by detergent show that, whereas essentially all of the receptors on erythrocytes are on the cell surface, B-lymphocytes contain a large internal receptor pool, which makes up more than 80% of the total cofactor activity of the cell.  相似文献   

2.
Isolation of cross-linked IgE-receptor complexes from rat macrophages   总被引:3,自引:0,他引:3  
Receptors for IgE on macrophages have been characterized by binding assays (1-3), but to date there has been only one report on the isolation of this receptor from macrophages, with use of the cell line U937 (4). In that report the receptor was isolated by using a heavily absorbed polyclonal antibody raised against lymphocytes bearing receptors for IgE (5). Monomeric IgE binds so weakly to macrophages that affinity chromatography of IgE-receptor complexes, such as has been used for isolation of the receptors for IgE on basophils (6) and for IgG on macrophages (7), cannot be readily accomplished. We have used oligomers of IgE to enhance the binding of IgE to macrophages (3), but this alone would not be sufficient because--depending on whether the receptors are multi- or univalent--once the cells are solubilized, multipoint attachment would again be reduced if not abrogated. In this report we describe the use of cross-linking reagents to stabilize further the interaction between IgE and its receptor on peritoneal macrophages. With this approach we have found that the receptor is likely to be composed of two chains whose gross properties are similar to the polypeptides constituting the receptor with high affinity for monomeric IgE on rat basophilic leukemia cells and mast cells.  相似文献   

3.
Antibodies directed against tumor-associated antigens are emerging as effective treatments for a number of cancers, although the mechanism(s) of action for some are unclear and still under investigation. We have previously examined a chimeric IgE antibody (MOv18 IgE), against the ovarian tumor-specific antigen, folate binding protein (FBP), and showed that it can direct human PBMC to kill ovarian cancer cells. We have developed a three-color flow cytometric assay to investigate the mechanism by which IgE receptors on U937 monocytes target and kill ovarian tumor cells. U937 monocytes express three IgE receptors, the high-affinity receptor, FcεRI, the low-affinity receptor, CD23, and galectin-3, and mediate tumor cell killing in vitro by two mechanisms, cytotoxicity, and phagocytosis. Our results suggest that CD23 mediates phagocytosis, which is enhanced by upregulation of CD23 on U937 cells with IL-4, whereas FcεRI mediates cytotoxicity. We show that effector : tumor cell bridging is associated with both activities. Galectin-3 does not appear to be involved in tumor cell killing. U937 cells and IgE exerted ovarian tumor cell killing in vivo in our xenograft model in nude mice. Harnessing IgE receptors to target tumor cells suggests the potential of tumor-specific IgE antibodies to activate effector cells in immunotherapy of ovarian cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The receptor for murine-interferon-gamma (Mu-IFN-gamma) has been characterized for its molecular size and equilibrium binding constant on a thymoma cell line, EL-4. Binding of 125I-IFN-gamma to intact cells and their solubilized membranes has shown a single class of receptor with Kd values of 1.9 x 10(-9) M and 1.3 x 10(-8) M, respectively. It was shown that solubilization of the Mu-IFN-gamma receptor with a Zwitterionic detergent (Chaps) preserves its binding activity. A direct comparison of the molecular mass of the Mu-IFN-gamma receptor on intact cells versus detergent-solubilized membranes was performed using a radiolabeled photoactivated crosslinking reagent and direct hybridization with 125I-labeled IFN-gamma on Western blots of solubilized receptor. The results indicate that both types of receptors have an identical molecular mass of approximately 80 kDa.  相似文献   

5.
S A Wank  C DeLisi  H Metzger 《Biochemistry》1983,22(4):954-959
Theory predicts that the kinetics of simple interactions between a ligand and a receptor bound on the surface of a cell will be affected by the occupancy of receptors on the same cell. In a diffusion-limited reaction the effect will be on the rate of dissociation but not on the rate of association until the cell is virtually saturated with ligand. If the rate of reaction is not diffusion limited, then the opposite holds; i.e., the forward velocities will be proportional to the concentration of vacant receptors, but the reverse reactions will not be. We examined the kinetics of reaction between immunoglobulin E (IgE) and its receptor and clearly demonstrated that the reaction is not diffusion controlled. The substantial (congruent to 30-fold) increase in the forward rate constant observed for the reaction of IgE with solubilized receptors as opposed to cell-bound receptors is therefore not an artifact of calculation. Since the reverse rate constants show little difference, we postulate that the presence of other surface components (rather than conformational differences in the receptor) affects the reaction with the cells. As an aid to the analysis, the theory has been extended so that not only the rate constants but also the entire course of the reaction of ligand with cell receptors can be predicted for diffusion-limited vs. non-diffusion-limited interactions.  相似文献   

6.
We present a joint theoretical and experimental study on the effects of competition for ligand between receptors in solution and receptors on cell surfaces. We focus on the following experiment. After ligand and cell surface receptors equilibrate, solution receptors are introduced, and the dissociation of surface bound ligand is monitored. We derive theoretical expressions for the dissociation rate and compare with experiment. In a standard dissociation experiment (no solution receptors present) dissociation may be slowed by rebinding, i.e., at high receptor densities a ligand that dissociates from one receptor may rebind to other receptors before separating from the cell. Our theory predicts that rebinding will be prevented when S much greater than N2Kon/(16 pi 2D a4), where S is the free receptor site concentration in solution, N the number of free surface receptor sites per cell, Kon the forward rate constant for ligand-receptor binding in solution, D the diffusion coefficient of the ligand, and a the cell radius. The predicted concentration of solution receptors needed to prevent rebinding is proportional to the square of the cell surface receptor density. The experimental system used in these studies consists of a monovalent ligand, 2,4-dinitrophenyl (DNP)-aminocaproyl-L-tyrosine (DCT), that reversibly binds to a monoclonal anti-DNP immunoglobulin E (IgE). This IgE is both a solution receptor and, when anchored to its high affinity Fc epsilon receptor on rat basophilic leukemia (RBL) cells, a surface receptor. For RBL cells with 6 x 10(5) binding sites per cell, our theory predicts that to prevent DCT rebinding to cell surface IgE during dissociation requires S much greater than 2,400 nM. We show that for S = 200-1,700 nM, the dissociation rate of DCT from surface IgE is substantially slower than from solution IgE where no rebinding occurs. Other predictions are also tested and shown to be consistent with experiment.  相似文献   

7.
The degradation of insulin receptors was studied in cultured Zajdela hepatoma cells (ZHC). Receptor distribution within the cell was evaluated by estimating: i) surface receptor level on entire cells, ii) total cell receptors solubilized by Triton from cell membranes and iii) intracellular receptors solubilized from cells whose surface receptors had been inactivated with trypsin. In the absence of insulin, 80-90% of the insulin binding sites were located on the cell surface. When insulin was added, a rapid decrease of surface receptors was observed. After 2 h, their level was reduced nearly by half; this reduction was accounted for by an actual receptor loss from the cell without an increase in the intracellular pool. These results indicate that insulin enhanced the rate of receptor degradation within the cell. Basal receptor inactivation was studied by using tunicamycin which inhibits new receptor synthesis. The surface receptor number was decreased with a half-life of 7 h, while the level of internal sites remained unchanged. Both basal and insulin-activated receptor degradation were markedly slowed down by chloroquine or dansylcadaverine, indicating the importance of endocytic pathways in this process. Similarly, when de novo protein glycosylation was inhibited for 24 h by tunicamycin, both basal and insulin-activated receptor inactivation were precluded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The receptors for insulin and insulin-like growth factor-I (IGF-I) are closely related in primary sequence and overall structure. We have examined the immunological relationships between these receptors by testing the reactivity of anti-(insulin receptor) monoclonal antibodies with IGF-I receptors in various tissues and cell lines. Antibodies for six distinct epitopes reacted with a subfraction of IGF-I receptors, as shown by inhibition of 125I-IGF-I binding, precipitation of 125I-IGF-I-receptor complexes or immunodepletion of receptor from tissue extracts before binding assays. Both immunoreactive and non-immunoreactive subfractions displayed the expected properties of 'classical' IGF-I receptors, in terms of relative affinities for IGF-I and insulin. The proportion of total IGF-I receptors which was immunoreactive varied in different cell types, being approx. 40% in Hep G2 cells, 35-40% in placental membranes and 75-85% in IM-9 cells. The immunoreactive fraction was somewhat higher in solubilized receptors than in the corresponding intact cells or membranes. A previously described monoclonal antibody, alpha-IR-3, specific for IGF-I receptors, inhibited IGF-I binding by more than 80% in all preparations. When solubilized placental receptors were pretreated with dithiothreitol (DTT) under conditions reported to reduce intramolecular (class I) disulphide bonds, the immunoreactivity of IGF-I receptors was abolished although total IGF-I binding was little affected. Under the same conditions insulin receptors remained fully immunoreactive. When solubilized receptor preparations were fractionated by gel filtration, both IGF-I and insulin receptors ran as symmetrical peaks of identical mobility. After DTT treatment, the IGF-I receptor was partially converted to a lower molecular mass form which was not immunoreactive. The insulin receptor peak showed a much less pronounced skewing and remained fully immunoreactive in all fractions. It is concluded that the anti- (insulin receptor) antibodies do not react directly with IGF-I receptor polypeptide, and that the apparent immunoreactivity of a subfraction of IGF-I receptors reflects their physical association with insulin receptors, both in cell extracts and in intact cells. The most likely basis for this association appears to be a 'hybrid' receptor containing one half (alpha beta) of insulin receptor polypeptide and the other (alpha' beta') of IGF-I receptor polypeptide within the native (alpha beta beta' alpha') heterotetrameric structure.  相似文献   

9.
The translocation of occupied surface insulin receptors to the nuclei of isolated hepatocytes was studied using the biologically active photosensitive insulin derivative, B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin (NAPA-DP-insulin). When hepatocytes were photolabeled at 4 degrees C, extensively washed, and then further incubated at 37 degrees C for 1 h, photolabeled insulin receptors, which were initially localized to the cell surface, accumulated in the subsequently isolated nuclei. When the isolated nuclei were solubilized and subjected to polyacrylamide gel electrophoresis and radioautography, labeled proteins with Mr identical to the cell surface insulin receptor were detected. Light microscopic radioautography of nuclei isolated from cells incubated for 1 ha at 37 degrees C demonstrated that 28% of these nuclei were specifically labeled with one or more grains. Electron microscopic radioautography of intact cultured hepatocytes, incubated 60 min at 37 degrees C, revealed that 26% of the thin-sectioned nuclei contained at least a single grain and 8.3% of the total cell-associated associated grains were located over the nuclei. Only 1.6% of grains were localized to lysosomes. In contrast, if photolabeled hepatocytes were incubated at 4 degrees C for up to 2 h, negligible accumulation of nuclear radioactivity was observed by polyacrylamide gel electrophoresis on light or electron microscopic radioautography. Conclusions are as follows. Occupied cell surface insulin receptors can internalize and translocate to the nucleus of intact hepatocytes by a time- and temperature-dependent mechanism. Accumulation and possible degradation of insulin receptors in lysosomes involves only a small percentage of the receptors internalized. Nuclear translocation of occupied cell surface insulin receptors may be a mechanism which mediates insulin's long term effects.  相似文献   

10.
Insulin receptor regulation was studied in the rat erythroblastic leukemic (EBL) cell in primary culture. After 1-2-hr incubations in medium containing 12 essential amino acids, glutamine, and serine, EBL cell protein synthesis and insulin receptor concentrations were increased compared to cells incubated without serine. Deficiency of medium isoleucine in the presence of serine rapidly decreased protein synthesis and insulin binding to intact cells. Supplementation of deficient media with serine or isoleucine had no effect on total insulin receptor numbers measured in solubilized cell preparations. Increased insulin binding following serine exposure was seen with binding assays at both 4 and 37 degrees C. Dissociation experiments to quantitate intracellular ligand after 37 degrees C binding assays showed increased in both surface binding and intracellular [125I]insulin accumulation. These data combined with previous observations suggest that amino acids essential for this cell are required for the rapid synthesis of a labile regulatory protein which facilitates the redistribution and/or recycling of insulin receptors.  相似文献   

11.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

12.
The human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-R) is expressed on both hematopoietic and non-hematopoietic tissues. Although the receptor has been identified by cross-linking studies as an 84,000-dalton protein, very little is known about its biochemistry. In this report, we describe a soluble binding assay for the human GM-R which allowed us to characterize the receptor complex from various sources, including plasma membranes of placenta, neutrophils, and human myeloid leukemia cell lines. Preparation of membranes as well as solubilization by Triton X-100 and N-octylglucoside resulted in a 5-10-fold lower affinity of the receptor for GM-CSF. The Kd decreased from 20 to 80 pM in intact cells to 200-500 pM in both intact and solubilized membranes. Binding in solution was rapid, specific for GM-CSF, and best fit a "one-site" model with an approximate Kd of 500 pM. The dissociation rate constant for the soluble GM-R was very similar to that of intact cells (k2 = 0.013 min-1 versus 0.017 min-1, respectively). As expected, solubilized membranes obtained from those cells expressing the highest number of GM-R (neutrophils and dimethyl sulfoxide-induced HL-60 cells; approximately 500-800 sites/cell) possessed the highest concentration of soluble GM-R (approximately 2-3 x 10(8) GM-R/micrograms). Cross-linking of 125I-GM-CSF to soluble GM-R resulted in the appearance of two specifically labeled complexes. A major 110-kDa receptor-ligand complex is found when cross-linking is performed with intact cells; both 110- and 200-kDa species are seen when cross-linking is performed with either intact membranes or soluble GM-R. These studies define methods by which intact GM-R can be solubilized and measured in solution, permitting a more complete biochemical characterization of the intact GM-R complex.  相似文献   

13.
A-431 cells were treated with inhibitors of either N-linked glycosylation (tunicamycin or glucosamine) or of N-linked oligosaccharide processing (swainsonine or monensin) to examine the glycosylation of epidermal growth factor (EGF) receptors and to determine the effect of glycosylation modification on receptor function. The receptor was found to be an Mr = 130,000 polypeptide to which a relatively large amount of carbohydrate is added co-translationally in the form of N-linked oligosaccharides. Processing of these oligosaccharides accounts for the 10,000-dalton difference in electrophoretic migration between the Mr = 160,000 precursor and Mr = 170,000 mature forms of the receptor. No evidence was found for O-linked oligosaccharides on the receptor. Mr = 160,000 receptors resulting from swainsonine or monensin treatment were present on the cell surface and retained full function, as judged by 125I-EGF binding to intact cells and detergent-solubilized extracts and by in vitro phosphorylation in the absence or presence of EGF. On the other hand, when cells were treated with tunicamycin or glucosamine, ligand binding was reduced by more than 50% in either intact cells or solubilized cell extracts. The Mr = 130,000 receptors synthesized in the presence of these inhibitors were not found on the cell surface. In addition, no Mr = 130,000 phosphoprotein was detected in the in vitro phosphorylation of tunicamycin or glucosamine-treated cells. It appears, therefore, that although terminal processing of N-linked oligosaccharides is not necessary for proper translocation or function of the EGF receptor, the addition of N-linked oligosaccharides is required.  相似文献   

14.
Large scale aggregation of fluorescein-labeled immunoglobulin E (IgE) receptor complexes on the surface of RBL cells results in the co- aggregation of a large fraction of the lipophilic fluorescent probe 3,3'-dihexadecylindocarbocyanine (diI) that labels the plasma membranes much more uniformly in the absence of receptor aggregation. Most of the diI molecules that are localized in patches of aggregated receptors have lost their lateral mobility as determined by fluorescence photobleaching recovery. The diI outside of patches is mobile, and its mobility is similar to that in control cells without receptor aggregates. It is unlikely that the co-aggregation of diI with IgE receptors is due to specific interactions between these components, as two other lipophilic probes of different structures are also observed to redistribute with aggregated IgE receptors, and aggregation of two other cell surface antigens also results in the coredistribution of diI at the RBL cell surface. Quantitative analysis of CCD images of labeled cells reveals some differences in the spatial distributions of co- aggregated diI and IgE receptors. The results indicate that cross- linking of specific cell surface antigens causes a substantial change in the organization of the plasma membrane by redistributing pre- existing membrane domains or causing their formation.  相似文献   

15.
Receptor down-regulation is the result of various cellular processes including receptor internalization, new synthesis, and recycling. Monensin, a monocarboxylic acid ionophore, has been used to characterize the role of recycling in the metabolism of insulin receptors on two cultured human cell lines, U-937 and IM-9, which have different rates of internalization. The U-937 monocyte-like cell internalizes insulin receptors readily. Incubation with monensin at low doses (10(-6) to 10(-7) M) for 2 h did not affect subsequent surface insulin binding. However, the drug markedly enhanced insulin-induced down-regulation. Monensin had little effect on ligand internalization in this cell line as demonstrated by quantitative morphometric analysis. The IM-9 lymphocyte, a slow internalizer, was less sensitive to monensin exposure. Prolonged exposure (12 h) to this compound of either cell line resulted in apparent inhibition of insertion into the surface membrane of both newly synthesized and recycled receptors. When solubilization was used to quantitate total cell receptors, there was essentially no difference in intact cell binding (i.e. surface receptors) and total cell binding in IM-9 cells when insulin-induced down regulation alone was compared to insulin and monensin. By contrast for the U-937 cells there was only a small further decrease in binding when monensin was added to insulin in the solubilized cells compared to the marked augmentation of down-regulation when monensin was added to insulin in intact cells. These data demonstrate that cells with a rapid internalization rate have an associated active recycling process. By contrast cells with a slow internalization rate have a similarly slow recycling rate. This is consistent with relatively equal rates of receptor biosynthesis and plasma membrane insertion in both cell types.  相似文献   

16.
The effect of tumor-promoting phorbol ester treatment on the binding of interleukin-1 beta (IL-1 beta) to specific cell surface receptors was investigated. A 1 h exposure of Raji human B lymphoma cells with the protein kinase C-activating phorbol ester, phorbol dibutyrate (PDBu), reduced IL-1 beta binding by up to 90% of control cells. This effect was dose-dependent and was not observed with 4-alpha-phorbol, an inactive tumor promoter. Analysis of 125I-labeled IL-1 beta binding to intact cells revealed that PDBu caused a 91% decrease in high-affinity cell-surface receptor number without an effect on receptor affinity. The phorbol ester response was rapid (30 min), observed both at 4 and 37 degrees C, and was preceded by the rapid translocation (t much less than 6 min) of protein kinase C (PKC) from the cytosol to the cell membrane. The PDBu-induced decrease in IL-1 beta receptor number was inhibited by prior incubation of cells for 30 min with the PKC inhibitor 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine (H7). The decrease in receptor binding was not due to enhanced IL-1 beta receptor internalization or shedding into the extracellular medium, since a similar effect was observed with solubilized IL-1 beta receptor. The most likely explanation for the phorbol ester effect appears to be cell surface inactivation of IL-1 receptors. These data suggest that modulation of PKC activity could play a role in the regulation of the IL-1 beta receptor.  相似文献   

17.
A cAMP binding site present on isolated plasma membranes of aggregation-competent D.discoideum cells has been solubilized with the nonionic detergent Emulphogene BC-720. An assay has been developed based on the principle of hydrophobic chromatography, in which the detergent solubilized cAMP binding protein is immobilized on alkyl-agarose beads at low detergent concentration. This allows the necessary rapid separation of bound and free [3H]-cAMP by filtration of the beads. The kinetics and nucleotide specificity of the detergent solubilized cAMP binding protein are comparable to those of the cAMP chemotactic receptor on intact cells and plasma membranes. The alkyl-agarose bead assay may have general utility for the assay of detergent solubilized membrane receptors.  相似文献   

18.
Immunoglobulin E-binding activity was expressed in Xenopus oocytes injected with mRNA from rat basophilic leukemia cells which possess abundant immunoglobulin E (IgE) receptor. Such activity was demonstrated with intact oocytes by their binding of 125I-labeled mouse monoclonal IgE. Binding activity was specific as shown by the total inhibition of 125I-IgE binding by unlabeled IgE but not by unlabeled IgG1. The relevance of the IgE-binding activity to the IgE receptor was also supported by the absence of this activity in oocytes injected with mRNA from cells lacking surface IgE receptors. mRNA coding for the IgE-binding activity was enriched in fractions sedimenting at 13.5 S in sucrose density gradients. From oocytes injected with rat basophilic leukemia mRNA, two major polypeptides were isolated by affinity purification on IgE immunoadsorbent. One (Mr = 31,000) is equivalent in size to the previously identified "receptor-associated protein;" the other (Mr = 40,000) is speculated to be a partially glycosylated or unglycosylated form of the alpha subunit of the IgE receptor. The binding of IgE-coated fluorescent microspheres by oocytes injected with rat basophilic leukemia mRNA demonstrated the surface expression of the IgE-binding proteins.  相似文献   

19.
Cross-linking reagents were used to further characterize the murine B cell receptor for the Fc portion of IgE (Fc epsilon R) and compare this receptor to the well-characterized high-affinity Fc epsilon R on rat basophilic leukemia (RBL) cells. The disulfide cleavable and noncleavable reagents 3,3'-dithiobis(sulfosuccinimidyl) propionate (DTSSP) and bis(sulfosuccinimidyl) suberate (BS3) were used. With these reagents, efficient cross-linking of the alpha component of the high-affinity RBL Fc epsilon R to the membrane-buried beta and gamma components occurred only if the membrane was solubilized before the cross-linking reaction. In studies with purified murine B cells, IgE could be cross-linked to the Fc epsilon R on intact cells with either DTSSP or BS3. Under the same conditions, up to 10% of the B cell surface immunoglobulin (sIg) (both IgM and IgD) was also found to cross-link to a portion of the IgE/Fc epsilon R complex, suggesting that on the intact murine B cell the Fc epsilon R is frequently in close association with sIg. The B cell Fc epsilon R was also examined for the presence of receptor-associated proteins. Under conditions where the high-affinity RBL Fc epsilon R was substantially cross-linked to the alpha, beta, gamma complex, no evidence was seen for similar cross-linking of the B cell Fc epsilon R. Cross-linking experiments on affinity-purified Fc epsilon R preparations also gave no evidence for receptor-associated proteins with the B cell Fc epsilon R, although evidence for receptor-receptor association was seen. Thus, these data further support the concept that there may be little relationship between the high-affinity mast cell/basophil Fc epsilon R and the low-affinity lymphocyte Fc epsilon R.  相似文献   

20.
We have used in situ electromigration and post-field relaxation (Poo, M.-m., 1981, Annu. Rev. Biophys. Bioeng., 10:245-276) to assess the effect of immunoglobulin E (IgE) binding on the lateral mobility of IgE- Fc receptors in the plasmalemma of rat basophilic leukemia (RBL) cells. Bound IgE sharply increased the receptor's electrokinetic mobility, whereas removal of cell surface neuraminic acids cut it to near zero. In contrast, we found only a small difference between the lateral diffusion coefficients (D) of vacant and IgE-occupied Fc receptors (D: 4 vs. 3 X 10(-10) cm2/s at 24 degrees C). This is true for monomeric rat IgE; with mouse IgE, the difference in apparent diffusion rates was slightly greater (D: 4.5 vs. 2.3 X 10(-10) cm2/s at 24 degrees C). This range of D values is close to that found in previous photobleaching studies of the IgE-Fc epsilon receptor complex in RBL cells and rat mast cells. Moreover, enzymatic depletion of cell coat components did not measurably alter the diffusion rate of IgE-occupied receptors. Thus, binding of fluorescent macromolecular probes to cell surface proteins need not severely impede lateral diffusion of the probed species. If the glycocalyx of RBL cells does limit lateral diffusion of the Fc epsilon receptor, it must act primarily on the receptor itself, rather than on receptor-bound IgE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号