首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Albina Abdrakhmanova 《BBA》2006,1757(12):1676-1682
In addition to the 14 central subunits, respiratory chain complex I from the aerobic yeast Yarrowia lipolytica contains at least 24 accessory subunits, most of which are poorly characterized. Here we investigated the role of the accessory 39-kDa subunit which belongs to the heterogeneous short-chain dehydrogenase/reductase (SDR) enzyme family and contains non-covalently bound NADPH. Deleting the chromosomal copy of the gene that codes for the 39-kDa subunit drastically impaired complex I assembly in Y. lipolytica. We introduced several site-directed mutations into the nucleotide binding motif that severely reduced NADPH binding. This effect was most pronounced when the arginine at the end of the second β-strand of the NADPH binding Rossman fold was replaced by leucine or aspartate. Mutations affecting nucleotide binding had only minor or moderate effects on specific catalytic activity in mitochondrial membranes but clearly destabilized complex I. One mutant exhibited a temperature sensitive phenotype and significant amounts of three different subcomplexes were observed even at more permissive temperature. We concluded that the 39-kDa subunit of Y. lipolytica plays a critical role in complex I assembly and stability and that the bound NADPH serves to stabilize the subunit and complex I as a whole rather than serving a catalytic function.  相似文献   

2.
Here we present a first assessment of the subunit inventory of mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica. A total of 37 subunits were identified. In addition to the seven central, nuclear coded, and the seven mitochondrially coded subunits, 23 accessory subunits were found based on 2D electrophoretic and mass spectroscopic analysis in combination with sequence information from the Y. lipolytica genome. Nineteen of the 23 accessory subunits are clearly conserved between Y. lipolytica and mammals. The remaining four accessory subunits include NUWM, which has no apparent homologue in any other organism and is predicted to contain a single transmembrane domain bounded by highly charged extramembraneous domains. This structural organization is shared among a group of 7 subunits in the Y. lipolytica and 14 subunits in the mammalian enzyme. Because only five of these subunits display significant evolutionary conservation, their as yet unknown function is proposed to be structure- rather than sequence-specific. The NUWM subunit could be assigned to a hydrophobic subcomplex obtained by fragmentation and sucrose gradient centrifugation. Its position within the membrane arm was determined by electron microscopic single particle analysis of Y. lipolytica complex I decorated with a NUWM-specific monoclonal antibody.  相似文献   

3.
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b.  相似文献   

4.
Volker Zickermann 《BBA》2007,1767(5):393-400
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b.  相似文献   

5.
Respiratory chains of bacteria and mitochondria contain closely related forms of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I. The bacterial complex I consists of 14 subunits, whereas the mitochondrial complex contains some 25 extra subunits in addition to the homologues of the bacterial subunits. One of these extra subunits with a molecular mass of 40 kDa belongs to a heterogeneous family of reductases/isomerases with a conserved nucleotide binding site. We deleted this subunit in Neurospora crassa by gene disruption. In the mutant nuo 40, a complex I lacking the 40 kDa subunit is assembled. The mutant complex I does not contain tightly bound NADPH present in wild-type complex I. This NADPH cofactor is not connected to the respiratory electron pathway of complex I. The mutant complex has normal NADH dehydrogenase activity and contains the redox groups known for wild-type complex I, one flavin mononucleotide and four iron-sulfur clusters detectable by electron paramagnetic resonance spectroscopy. In the mutant complex these groups are all readily reduced by NADH. However, the mutant complex is not capable of reducing ubiquinone. A recently described redox group identified in wild-type complex I by UV-visible spectroscopy is not detectable in the mutant complex. We propose that the reductase/isomerase subunit with its NADPH cofactor takes part in the biosynthesis of this new redox group.  相似文献   

6.
While diagnosis and genetic analysis of mitochondrial disorders has made remarkable progress, we still do not understand how given molecular defects are correlated to specific patterns of symptoms and their severity. Towards resolving this dilemma for the largest and therefore most affected respiratory chain enzyme, we have established the yeast Yarrowia lipolytica as a eucaryotic model system to analyse respiratory chain complex I. For in vivo analysis, eYFP protein was attached to the 30-kDa subunit to visualize complex I and mitochondria. Deletions strains for nuclear coded subunits allow the reconstruction of patient alleles by site-directed mutagenesis and plasmid complementation. In most of the pathogenic mutations analysed so far, decreased catalytic activities, elevated K(M) values, and/or elevated I(50) values for quinone-analogous inhibitors were observed, providing plausible clues on the pathogenic process at the molecular level. Leigh mutations in the 49-kDa and PSST homologous subunits are found in regions that are at the boundaries of the ubiquinone-reducing catalytic core. This supports the proposed structural model and at the same time identifies novel domains critical for catalysis. Thus, Y. lipolytica is a useful lower eucaryotic model that will help to understand how pathogenic mutations in complex I interfere with enzyme function.  相似文献   

7.
The obligate aerobic yeast Yarrowia lipolytica is introduced as a powerful new model for the structural and functional analysis of mitochondrial complex I. A brief introduction into the biology and the genetics of this nonconventional yeast is given and the relevant genetic tools that have been developed in recent years are summarized. The respiratory chain of Y. lipolytica contains complexes I-IV, one "alternative" NADH-dehydrogenase (NDH2) and a non-heme alternative oxidase (AOX). Because the NADH binding site of NDH2 faces the mitochondrial intermembrane space rather than the matrix, complex I is an essential enzyme in Y. lipolytica. Nevertheless, complex I deletion strains could be generated by attaching the targeting sequence of a matrix protein, thereby redirecting NDH2 to the matrix side. Deletion strains for several complex I subunits have been constructed that can be complemented by shuttle plasmids carrying the deleted gene. Attachment of a hexa-histidine tag to the NUGM (30 kDa) subunit allows fast and efficient purification of complex I from Y. lipolytica by affinity-chromatography. The purified complex has lost most of its NADH:ubiquinone oxidoreductase activity, but is almost fully reactivated by adding 400-500 molecules of phosphatidylcholine per complex I. The established set of genetic tools has proven useful for the site-directed mutagenesis of individual subunits of Y. lipolytica complex I. Characterization of a number of mutations already allowed for the identification of several functionally important amino acids, demonstrating the usefulness of this approach.  相似文献   

8.
Proteins specifically involved in the biogenesis of respiratory complex I in eukaryotes have been characterized. The complex I intermediate associated proteins CIA30 and CIA84 are tightly bound to an assembly intermediate of the membrane arm. Like chaperones, they are involved in multiple rounds of membrane arm assembly without being part of the mature structure. Two biosynthetic subunits of eukaryotic complex I have been characterized. The acyl carrier subunit is needed for proper assembly of the peripheral arm as well as the membrane arm of complex I. It may interact with enzymes of a mitochondrial fatty acid synthetase. The 39/40-kDa subunit appears to be an isomerase with a tightly bound NADPH. It is related to a protein family of reductases/isomerases. Both subunits have been discussed to be involved in the synthesis of a postulated, novel, high-potential redox group.  相似文献   

9.
Bovine mitochondrial NADH-ubiquinone reductase (complex I), the first enzyme in the electron-transport chain, is a membrane-bound assembly of more than 30 different proteins, and the flavoprotein (FP) fraction, a water-soluble assembly of the 51-, 24-, and 10-kDa subunits, retains some of the catalytic properties of the enzyme. The 51-kDa subunit binds the substrate NAD(H) and probably contains both the cofactor, FMN, and also a tetranuclear iron-sulfur center, while a binuclear iron-sulfur center is located in the 24- or 10-kDa proteins. The 75-kDa subunit is the largest of the six proteins in the iron-sulfur protein (IP) fraction, and its sequence indicates that it too contains iron-sulfur clusters. Partial protein sequences have been determined at the N-terminus and at internal sites in the 51-kDa subunit, and the corresponding cDNA encoding a precursor of the protein has been isolated by using a novel strategy based on the polymerase chain reaction. The mature protein is 444 amino acids long. Its sequence, and those of the 24- and 75-kDa subunits, shows that mitochondrial complex I is related to a soluble NAD-reducing hydrogenase from the facultative chemolithotroph Alcaligenes eutrophus H16. This enzyme has four subunits, alpha, beta, gamma, and delta, and the alpha gamma dimer is an NADH oxidoreductase that contains FMN. The gamma-subunit is related to residues 1-240 of the 75-kDa subunit of complex I, and the alpha-subunit sequence is a fusion of homologues of the 24- and 51-kDa subunits, in the order N- to C-terminal. The most highly conserved regions are in the 51-kDa subunit and probably form parts of nucleotide binding sites for NAD(H) and FMN. Another conserved region surrounds the sequence motif CysXXCysXXCys, which is likely to provide three of the four ligands of a 4Fe-4S center, possibly that known as N-3. Characteristic ligands for a second 4Fe-4S center are conserved in the 75-kDa and gamma-subunits. This relationship with the bacterial enzyme implies that the 24- and 51-kDa subunits, together with part of the 75-kDa subunit, constitute a structural unit in mitochondrial complex I that is concerned with the first steps of electron transport.  相似文献   

10.
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand.  相似文献   

11.
Complex I is the largest complex in the respiratory chain, and the least understood. We have determined the 3D structure of complex I from Yarrowia lipolytica lacking the flavoprotein part of the N-module, which consists of the 51 kDa (NUBM) and the 24 kDa (NUHM) subunits. The reconstruction was determined by 3D electron microscopy of single particles. A comparison to our earlier reconstruction of the complete Y. lipolytica complex I clearly assigns the two flavoprotein subunits to an outer lobe of the peripheral arm of complex I. Localizing the two subunits allowed us to fit the X-ray structure of the hydrophilic fragment of complex I from Thermus thermophilus. The fit that is most consistent with previous immuno-electron microscopic data predicts that the ubiquinone reducing catalytic center resides in the second peripheral lobe, while the 75 kDa subunit is placed near the previously seen connection between the peripheral arm and the membrane arm protrusions.  相似文献   

12.
HeLa DNA polymerase epsilon (pol epsilon), possibly involved in both DNA replication and DNA repair, was previously isolated as a complex of a 261-kDa catalytic subunit and a tightly bound 59-kDa accessory protein. Saccharomyces cerevisiae pol epsilon, however, consists of four subunits: a 256-kDa catalytic subunit with 39% identity to HeLa pol epsilon p261, a 80-kDa subunit (DPB2) with 26% identity to HeLa pol epsilon p59, a 23-kDa subunit (DPB3), and a 22-kDa subunit (DPB4). We report here the identification and the cloning of two additional subunits of HeLa pol epsilon, p17, and p12. Both proteins contain histone fold motifs which are present also in S. cerevisiae DPB4 and DPB3. The histone fold motifs of p17 and DPB4 are related to that of subunit A of the CCAAT binding factor, whereas the histone fold motifs found in p12 and DPB3 are homologous to that in subunit C of CCAAT binding factor. p17 together with p12, but not p17 or p12 alone, interact with both p261 and p59 subunits of HeLa pol epsilon. The genes for p17 and p12 can be assigned to chromosome locations 9q33 and 2p12, respectively.  相似文献   

13.
We have analyzed a series of eleven mutations in the 49-kDa protein of mitochondrial complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica to identify functionally important domains in this central subunit. The mutations were selected based on sequence homology with the large subunit of [NiFe] hydrogenases. None of the mutations affected assembly of complex I, all decreased or abolished ubiquinone reductase activity. Several mutants exhibited decreased sensitivities toward ubiquinone-analogous inhibitors. Unexpectedly, seven mutations affected the properties of iron-sulfur cluster N2, a prosthetic group not located in the 49-kDa subunit. In three of these mutants cluster N2 was not detectable by electron-paramagnetic resonance spectroscopy. The fact that the small subunit of hydrogenase is homologous to the PSST subunit of complex I proposed to host cluster N2 offers a straightforward explanation for the observed, unforeseen effects on this iron-sulfur cluster. We propose that the fold around the hydrogen reactive site of [NiFe] hydrogenase is conserved in the 49-kDa subunit of complex I and has become part of the inhibitor and ubiquinone binding region. We discuss that the fourth ligand of iron-sulfur cluster N2 missing in the PSST subunit may be provided by the 49-kDa subunit.  相似文献   

14.
Mitochondrial proton-translocating NADH-dehydrogenase (complex I) is one of the largest and most complicated membrane bound protein complexes. Despite its central role in eukaryotic oxidative phosphorylation and its involvement in a broad range of human disorders, little is known about its structure and function. Therefore, we have started to use the powerful genetic tools available for the strictly aerobic yeast Yarrowia lipolytica to study this respiratory chain enzyme. To establish Y. lipolytica as a model system for complex I, we purified and characterized the multisubunit enzyme from Y lipolytica and sequenced the nuclear genes coding for the seven central subunits of its peripheral part. Complex I from Y lipolytica is quite stable and could be isolated in a highly pure and monodisperse state. One binuclear and four tetranuclear iron-sulfur clusters, including N5, which was previously known only from mammalian mitochondria, were detected by EPR spectroscopy. Initial structural analysis by single particle electron microscopy in negative stain and ice shows complex I from Y. lipolytica as an L-shaped particle that does not exhibit a thin stalk between the peripheral and the membrane parts that has been observed in other systems.  相似文献   

15.
Direct photoaffinity labeling of purified bovine heart NADH:ubiquinone oxidoreductase (complex I) with 32P-labeled NAD(H), NADP(H) and ADP has shown that five polypeptides become labeled, with molecular masses of 51, 42, 39, 30, and 18-20 kDa. The 51 and the 30-kDa polypeptides were labeled with either [32P]NAD(H), [32P]NADP(H) or [beta-32P]ADP. The 42-kDa polypeptide was labeled with [32P]NAD(H) and to a small extent with [beta-32P]ADP. It was not labeled with [32P]NADP(H). The 39-kDa polypeptide was labeled with [32P]NADPH and to a small extent with [beta-32P]ADP. Our previous studies had shown that this subunit also binds NADP, but not NAD(H) [Yamaguchi, M., Belogrudov, G.I. & Hatefi, Y. (1998) J. Biol. Chem. 273, 8094-8098]. The 18-20-kDa polypeptide was labeled only with [32P]NADPH. Among these polypeptides, the 51-kDa subunit is known to contain FMN and a [4Fe-4S] cluster, and is the NAD(P)H-binding subunit of the primary dehydrogenase domain of complex I. The possible roles of the other nucleotide-binding subunits of complex I have been discussed.  相似文献   

16.
Numerous hydrophobic and amphipathic compounds including several detergents are known to inhibit the ubiquinone reductase reaction of respiratory chain complex I (proton pumping NADH:ubiquinone oxidoreductase). Guided by the X-ray structure of the peripheral arm of complex I from Thermus thermophilus we have generated a large collection of site-directed mutants in the yeast Yarrowia lipolytica targeting the proposed ubiquinone and inhibitor binding pocket of this huge multiprotein complex at the interface of the 49-kDa and PSST subunits. We could identify a number of residues where mutations changed I(50) values for representatives from all three groups of hydrophobic inhibitors. Many mutations around the domain of the 49-kDa subunit that is homologous to the [NiFe] centre binding region of hydrogenase conferred resistance to DQA (class I/type A) and rotenone (class II/type B) indicating a wider overlap of the binding sites for these two types of inhibitors. In contrast, a region near iron-sulfur cluster N2, where the binding of the n-alkyl-polyoxyethylene-ether detergent C(12)E(8) (type C) was exclusively affected, appeared comparably well separated. Taken together, our data provide structure-based support for the presence of distinct but overlapping binding sites for hydrophobic inhibitors possibly extending into the ubiquinone reduction site of mitochondrial complex I.  相似文献   

17.
In bovine heart mitochondria and in submitochondrial particles, membrane-associated proteins with apparent molecular masses of 18 and 10 kDa become strongly radiolabeled by [(32)P]ATP in a cAMP-dependent manner. The 18-kDa phosphorylated protein is subunit ESSS from complex I and not as previously reported the 18 k subunit (with the N-terminal sequence AQDQ). The phosphorylated residue in subunit ESSS is serine 20. In the 10 kDa band, the complex I subunit MWFE was phosphorylated on serine 55. In the presence of protein kinase A and cAMP, the same subunits of purified complex I were phosphorylated by [(32)P]ATP at the same sites. Subunits ESSS and MWFE both contribute to the membrane arm of complex I. Each has a single hydrophobic region probably folded into a membrane spanning alpha-helix. It is likely that the phosphorylation site of subunit ESSS lies in the mitochondrial matrix and that the site in subunit MWFE is in the intermembrane space. Subunit ESSS has no known role, but subunit MWFE is required for assembly into complex I of seven hydrophobic subunits encoded in the mitochondrial genome. The possible effects of phosphorylation of these subunits on the activity and/or the assembly of complex I remain to be explored.  相似文献   

18.
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.  相似文献   

19.
Exploring the ubiquinone binding cavity of respiratory complex I   总被引:1,自引:0,他引:1  
Proton pumping respiratory complex I is a major player in mitochondrial energy conversion. Yet little is known about the molecular mechanism of this large membrane protein complex. Understanding the details of ubiquinone reduction will be prerequisite for elucidating this mechanism. Based on a recently published partial structure of the bacterial enzyme, we scanned the proposed ubiquinone binding cavity of complex I by site-directed mutagenesis in the strictly aerobic yeast Yarrowia lipolytica. The observed changes in catalytic activity and inhibitor sensitivity followed a consistent pattern and allowed us to define three functionally important regions near the ubiquinone-reducing iron-sulfur cluster N2. We identified a likely entry path for the substrate ubiquinone and defined a region involved in inhibitor binding within the cavity. Finally, we were able to highlight a functionally critical structural motif in the active site that consisted of Tyr-144 in the 49-kDa subunit, surrounded by three conserved hydrophobic residues.  相似文献   

20.
Pyridoxal 5'-phosphate (PLP) inhibits DNA polymerase activity of the intact multifunctional DNA polymerase alpha complex by binding at either of two sites which can be distinguished on the basis of differential substrate protection. One site (PLP site 1) corresponds to an important nucleotide-binding site which is distinct from the DNA polymerase active site and which appears to correspond to the DNA primase active site while the second site (PLP site 2) corresponds to the dNTP binding domain of the DNA polymerase active site. A method for the enzymatic synthesis of high specific activity [32P]PLP is described and this labeled PLP was used to identify the binding sites described above. PLP inhibition of DNA polymerase alpha activity was shown to involve the binding of only a few (one to two) molecules of PLP/molecule of DNA polymerase alpha, and this label is primarily found on the 148- and 46-kDa subunits although the 63-, 58-, and 49-kDa subunits are labeled to a lesser extent. Labeling of the 46-kDa subunit by [32P]PLP is the only labeling on the enzyme which is blocked or even diminished in the presence of nucleotide alone, and, therefore, this 46-kDa subunit contains PLP site 1. Labeling of the 148-kDa subunit is enhanced in the presence of template-primer, suggesting that this subunit undergoes a conformational change upon binding template-primer. Furthermore, labeling of the 148-kDa subunit is the only labeling on the enzyme which can be specifically blocked only by the binding of both template-primer and the correct dNTP in a stable ternary complex. Therefore, the 148-kDa subunit contains PLP site 2, which corresponds to the dNTP binding domain of the DNA polymerase active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号