首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of Cbfa1 in ameloblastin gene transcription.   总被引:8,自引:0,他引:8  
  相似文献   

2.
3.
4.
Abstract: The tyrosine hydroxylase gene is expressed specifically in catecholaminergic cells, and its activity is regulated by afferent stimuli. To characterize molecular mechanisms underlying those regulations, we have constructed chimeric genes consisting of bovine tyrosine hydroxylase gene promoters (wild-type or deletion mutants) and a luciferase reporter gene. The basal expression of these genes and their regulation by angiotensin II were examined in cultured bovine adrenal medullary cells. Luciferase activity was normalized to the amount of transfected plasmid DNA. A pTHgoodLUC plasmid containing the -428/+21-bp fragment of the tyrosine hydroxylase gene promoter expressed luciferase activity at severalfold higher levels than the promoterless pOLUC plasmid. Deletion of the -194/-54-bp promoter fragment containing POU/Oct, SP1, and other putative regulatory elements increased luciferase expression fivefold. An additional deletion further upstream (-269/-194 bp), including a 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive element (TRE)-like site, reduced promoter activity. These results indicate the presence of negatively and positively acting regions in the bovine tyrosine hydroxylase gene promoter controlling basal promoter activity in adrenal medullary cells. Angiotensin II stimulated the expression of endogenous tyrosine hydroxylase gene and pTHgood-LUC approximately threefold without affecting the expression of pOLUC. A comparable threefold stimulation was observed following the deletion of the -194/-54-bp promoter region, despite the increase in basal promoter activity. Additional deletion of the -269/-194-bp promoter fragment reduced stimulation by angiotensin II to 1.5-fold. These results indicate that the angiotensin II receptor-responsive element is located in the -269/-194-bp promoter region containing the TRE-like site. Additional angiotensin II-responsive site(s) may be present outside this region. Gel mobility shift assays demonstrated constitutive and angiotensin II-induced protein binding to the tyrosine hydroxylase gene promoter. Some DNA-protein complexes were displaced with c-Fos antibodies. The results suggest that c-Fos-related antigens support basal promoter activity and mediate activation of tyrosine hydroxylase by angiotensin II receptor.  相似文献   

5.
6.
7.
8.
HSP47 is a collagen-binding heat shock protein and is assumed to act as a molecular chaperone in the biosynthesis and secretion of procollagen. As the synthesis of HSP47 is closely correlated with that of collagen in various cell lines and tissues, we performed a promoter/reporter assay using HSP47-producing and nonproducing cells. 280 base pairs (bp(s)) of upstream promoter were shown to be necessary for the basal expression but not to be enough for the cell type-specific expression. When the first and the second introns were introduced downstream of this 280-bp region, marked up-regulation of the reporter activity was observed in HSP47-producing cells but not in nonproducing cells. This was confirmed in transgenic mice by staining the lacZ gene product under the control of the 280-bp upstream promoter and the introns. Staining was observed in skin, chondrocytes, precursor of bone, and other HSP47/collagen-producing tissues. A putative Sp1-binding site at -210 bp in the promoter, to which Sp3 and an unidentified protein bind, was shown to be responsible for this up-regulation when combined with the introns. However no difference in the binding to this probe was observed between HSP47-producing and nonproducing cells. The responsible region for cell type-specific up-regulation was found to be located in a 500-bp segment in the first intron. On electrophoresis mobility shift assay using this 500-bp probe, specific DNA-protein complexes were only observed in HSP47-producing cell extracts. These results suggest that two separate elements are necessary for the cell type-specific expression of the hsp47 gene; one is a putative Sp1-binding site at -210 bp necessary for basal expression, and the other is a 500-bp region within the first intron, required for cell type-specific expression.  相似文献   

9.
10.
11.
12.
13.
14.
The baculovirus Autographa californica nuclear polyhedrosis virus contains an element known as homologous region 5 (hr5) which is an enhancer of delayed-early viral gene expression. To begin to identify proteins that interact with hr5, DNA-protein interactions were analyzed by using extracts from Spodoptera frugiperda cells and a fragment of DNA containing the left half of the hr5 enhancer. This 252-bp DNA fragment contains two copies of a 30-bp direct repeat (DR30) and two copies of a 24-bp imperfect palindrome contained within a 60-bp direct repeat (DR60). Extracts prepared from normal S. frugiperda cells and cells transfected with pUC8 lacked enhancer-binding proteins. However, when gel shift assays were performed with extracts from cells transfected with a plasmid containing the viral trans-activator IE1 gene, two DNA-protein complexes were formed. Both DNA-protein complexes were specifically inhibited by competition with a 60-bp oligonucleotide corresponding to DR60 but not by competition with a different oligonucleotide corresponding to DR30. Formation of the two complexes did not appear to involve cooperative interactions between binding proteins. When DR60 was used as a probe, a single complex was formed. To measure the enhancer activity of DR60, a reporter plasmid was constructed that contained DR60 cloned upstream of the reporter chloramphenicol acetyltransferase gene under the control of the delayed-early 39K promoter. Transient expression analysis indicated that the oligonucleotide increased expression of this gene 300-fold over the level obtained in the absence of any enhancer sequences.  相似文献   

15.
16.
17.
The molecular mechanisms by which mesenchymal cells differentiate into chondrocytes are still poorly understood. We have used the gene for a chondrocyte marker, the proalpha1(II) collagen gene (Col2a1), as a model to delineate a minimal sequence needed for chondrocyte expression and identify chondrocyte-specific proteins binding to this sequence. We previously localized a cartilage-specific enhancer to 156 bp of the mouse Col2a1 intron 1. We show here that four copies of a 48-bp subsegment strongly increased promoter activity in transiently transfected rat chondrosarcoma (RCS) cells and mouse primary chondrocytes but not in 10T1/2 fibroblasts. They also directed cartilage specificity in transgenic mouse embryos. These 48 bp include two 11-bp inverted repeats with only one mismatch. Tandem copies of an 18-bp element containing the 3' repeat strongly enhanced promoter activity in RCS cells and chondrocytes but not in fibroblasts. Transgenic mice harboring 12 copies of this 18-mer expressed luciferase in ribs and vertebrae and in isolated chondrocytes but not in noncartilaginous tissues except skin and brain. In gel retardation assays, an RCS cell-specific protein and another closely related protein expressed only in RCS cells and primary chondrocytes bound to a 10-bp sequence within the 18-mer. Mutations in these 10 bp abolished activity of the multimerized 18-bp enhancer, and deletion of these 10 bp abolished enhancer activity of 465- and 231-bp intron 1 segments. This sequence contains a low-affinity binding site for POU domain proteins, and competition experiments with a high-affinity POU domain binding site strongly suggested that the chondrocyte proteins belong to this family. Together, our results indicate that an 18-bp sequence in Col2a1 intron 1 controls chondrocyte expression and suggest that RCS cells and chondrocytes contain specific POU domain proteins involved in enhancer activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号