首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Mezzanotte 《Chromosoma》1986,93(3):249-255
Polytene and mitotic chromosomes of Drosophila melanogaster were treated with either Alu I or Hae III restriction endonucleases. Subsequent staining with the DNA-specific fluorochrome ethidium bromide showed that these enzymes are capable of selectively digesting chromosomal DNA in fixed cytological preparations, as previously shown in mammalian metaphase chromosomes. Alu I or Hae III digestion made possible the localization in situ of some highly repetitive DNAs in both polytene and mitotic chromosomes, while only Alu I permitted the localization of the 5S RNA genes on the polytene chromosomes of D. melanogaster.  相似文献   

2.
Microsatellite DNA markers for rice chromosomes   总被引:45,自引:1,他引:44  
We found 369 complete microsatellites, of which (CGG/GCC)n was the most frequent, in 11 798 rice sequences in the database. Of these microsatellites, 35 out of 45 could be successfully converted into microsatellite DNA markers using sequence information in their flanking regions. Thus, the time and labor used to develop new microsatellite DNA markers could be saved by using these published sequences. Twenty eight polymorphic markers between Asominori (japonica) and IR24 (indica) have been correctly mapped on the rice genome and microsatellites appear to be randomly distributed in the rice chromosomes. Integration of these markers with the published microsatellite DNA markers showed that about 35% of the rice chromosomes were covered by the 56 microsatellite DNA markers. These microsatellites were hypervariable and were easily to assay by PCR; they were distributed to all chromosomes and therefore, one can easily select plants carrying desired chromosome regions using these microsatellite DNA markers. Thus, microsatellite maps should aid the development of new breeds of rice saving time, labor, and money.  相似文献   

3.
The mammalian family X DNA polymerases (DNA polymerases beta, lambda, mu, and TdT) contribute to base excision repair and double-strand break repair by virtue of their ability to fill short gaps in DNA. Structural information now exists for all four of these enzymes, making this the first mammalian polymerase family whose structural portrait is complete. Here we consider how distinctive structural features of these enzymes contribute to their biological functions in vivo.  相似文献   

4.
A combined approach was used to derive a detailed physical map of Nicotiana tabacum chloroplast DNA for the restriction enzymes SalI, SmaI, KpnI, and BamHI. Complete maps for the restriction enzymes SalI, SmaI, and KpnI were derived by using two-dimensional agarose gel analysis of fragments obtained by reciprocal double digestion of chloroplast DNA. We have characterized a complete cloned library of N. tabacum chloroplast DNA which contains overlapping restriction fragments resulting from partial digestion by BamHI. With these clones and existing data, we used a novel computer-aided analysis to derive a detailed map for the enzyme BamHI. A comparison and compilation of all published N. tabacum chloroplast DNA restriction maps is presented. Differences between ours and a previously published SmaI and BamHI restriction map are discussed.  相似文献   

5.
Brown SE  Severson DW  Smith LA  Knudson DL 《Genetics》2001,157(3):1299-1305
Two approaches were used to correlate the Aedes aegypti genetic linkage map to the physical map. STS markers were developed for previously mapped RFLP-based genetic markers so that large genomic clones from cosmid libraries could be found and placed to the metaphase chromosome physical maps using standard FISH methods. Eight cosmids were identified that contained eight RFLP marker sequences, and these cosmids were located on the metaphase chromosomes. Twenty-one cDNAs were mapped directly to metaphase chromosomes using a FISH amplification procedure. The chromosome numbering schemes of the genetic linkage and physical maps corresponded directly and the orientations of the genetic linkage maps for chromosomes 2 and 3 were inverted relative to the physical maps. While the chromosome 2 linkage map represented essentially 100% of chromosome 2, approximately 65% of the chromosome 1 linkage map mapped to only 36% of the short p-arm and 83% of the chromosome 3 physical map contained the complete genetic linkage map. Since the genetic linkage map is a RFLP cDNA-based map, these data also provide a minimal estimate for the size of the euchromatic regions. The implications of these findings on positional cloning in A. aegypti are discussed.  相似文献   

6.
We have investigated whether restriction endonucleases produce bands on human chromosomes by extracting DNA, using staining methods which are stoichiometric for DNA. Restriction enzymes that produce C-band patterns appear to remove DNA extensively from chromosome arms. In general, however, those restriction enzymes that produce G-bands do not extract DNA from chromosomes, and their effects are believed to be due to conformational change in the chromosomal DNA; in these cases, the chromosomal regions affected appear to be determined by the chromosome structure and not by the specificity of the enzyme. DNA loss from chromosomes due to digestion by restriction enzymes may in some cases be uniform, although a G-banding pattern is visible after Giemsa staining.  相似文献   

7.
There are about 17 chromosomes in yeast Saccharomycescerevisiae.A middle sized chromosome,chromosome V,waschosen in this work for studying and constructing the physi-cal maps.Chromosome V from strain A364a was isolatedby pulsed-field gradient gel electrophoresis(PFGE).Gelslices containing chromosome V DNA were digestedwith two rare cutting enzymes,NotⅠand SfiⅠ,and three6-Nt recognizing enzymes,SmaⅠ,SstⅡ and ApaⅠ.Several strategies-partial or complete digestions,digestion with different sets of two enzymes,and hybrid-ization with cloned genetically mapped probes(CAN1,URA3,CEN5,PRO3,CHO1,SUP19,RAD51,RAD3)——were used to align the restriction fragments.There are 9,9,15,17,and 20 sites for NotⅠ,SfiⅠ,SmaⅠ,SstⅡ and ApaⅠrespectively in the map of the A364a chromosome V.Itstotal length was calculated to be 620 Kb(Kilo-bases).Thedistributions of the cutting sites for these five enzymesthrough the whole chromosome are not uniform.A comp-arison between the physical map and the genetic map wasalso made.  相似文献   

8.
A strategy is described that allows the development of polymorphic genetic markers to be characterized in individual genes. Segments of the 3' untranslated regions are amplified, and polymorphisms are detected by digestion with frequently cutting enzymes and with the detection of single-stranded conformation polymorphisms. This allows these genes, or DNA segments, to be placed on the linkage maps of human chromosomes. Polymorphisms in two genes have been identified using this approach. A HaeIII polymorphism was detected in the KIT proto-oncogene, physically assigned to chromosome 4q11-12. This polymorphism is linked to other chromosome 4p markers and is in linkage disequilibrium with a HindIII polymorphism previously described at this locus. We have also identified in the insulin-like growth factor1 receptor gene (IGF1R) a 2-bp deletion that is present at a frequency of .25 in the Caucasian population. Pedigree analysis with this insertion/deletion polymorphism placed the IGF1R gene at the end of the current linkage map of chromosome 15q, consistent with the physical assignment of 15q2526. Thus, polymorphisms in specific genes can be used to related the physical, genetic, and comparative maps of mammalian genomes and to simplify the testing of candidate genes for human diseases.  相似文献   

9.
The chromosomes of the human protozoan parasiteLeishmaniaexhibit striking size polymorphisms among different strains. To define the structural basis for these variations, we have constructed full-length restriction maps of five chromosomes of 370 to 490 kb inLeishmania infantumclone LEM1317. Rare-cutting sites for the enzymesAseI,DraI,XbaI,SspI,SpeI, andSfiI were mapped by partial and complete digestion of either gel-purified chromosomes or total DNA. Sixty-eight anonymous DNA probes were localized on these maps, as well as the mini-exon and dihydrofolate reductase–thymidilate synthase gene probes. These maps were compared with those from other strains ofL. infantumandLeishmania donovani.This showed that the distribution of the restriction sites was conserved in these two close species. Four regions involved in the size variations of three chromosomes were localized; subtelomeric sequences were responsible for size variability in three of four cases. The whole of this study takes a particular significance in the frame of the project of complete physical mapping and sequencing of theLeishmaniagenome.  相似文献   

10.
A macrorestriction map representing the complete physical map of the Rhodobacter sphaeroides 2.4.1 chromosomes has been constructed by ordering the chromosomal DNA fragments from total genomic DNA digested with the restriction endonucleases AseI, SpeI, DraI, and SnaBI. Junction fragments and multiple restriction endonuclease digestions of the chromosomal DNAs derived from wild-type and various mutant strains, in conjunction with Southern hybridization analysis, have been used to order all of the chromosomal DNA fragments. Our results indicate that R. sphaeroides 2.4.1 carries two different circular chromosomes of 3,046 +/- 95 and 914 +/- 17 kilobases (kb). Both chromosome I (3,046 kb) and chromosome II (914 kb) contain rRNA cistrons. It appears that only a single copy of the rRNA genes is contained on chromosome I (rrnA) and that two copies are present on chromosome II (rrnB, rrnC). Additionally, genes for glyceraldehyde 3-phosphate dehydrogenase (gapB) and delta-aminolevulinic acid synthase (hemT) are found on chromosome II. In each instance, there appears to be a second copy of each of these genes on chromosome I, but the extent of the DNA homology is very low. Genes giving rise to enzymes involved in CO2 fixation and linked to the gene encoding the form I enzyme (i.e., the form I region) are on chromosome I, whereas those genes representing the form II region are on chromosome II. The complete physical and partial genetic maps for each chromosome are presented.  相似文献   

11.
A rapidly growing, long-term suspension culture derived from Triticum aestivum L. (wheat) was synchronized using hydroxyurea and colchicine, and a chromosome suspension with chromosomes was made. After staining with the DNA-specific fluorochromes Hoechst 33258 and Chromomycin univariate and bivariate flow-cytometry histograms showed 15 clearly resolved peaks corresponding to individual chromosome types or groups of chromosomes with similar DNA contents. The flow karyotype was closely similar to a histogram of DNA content measurements of Feulgen-stained chromosomes made by microdensitometry. We were able to show the stability of the flow karyotype of the cell line over a year, while a parallel subculture had a slightly different, stable, karyotype following different growth conditions. The data indicate that flow cytometric analysis of plant karyotypes enables accurate, statistically precise chromosome classification and karyotyping of cereals. There was little overlap between individual flow-histogram peaks, so the method is useful for flow sorting and the construction of chromosome specific-recombinant DNA libraries. Using bivariate analysis, the AT:GC ratio of all the chromosomes was remarkably similar, in striking contrast to mammalian flow karyotypes. We speculate about a fundamental difference in organization and homogenization of DNA sequences between chromosomes within mammalian and plant genomes. Received: 24 April 1996 / Accepted: 24 May 1996  相似文献   

12.
Artificial chromosomes: ideal vectors?   总被引:5,自引:0,他引:5  
Artificial chromosomes are DNA molecules of predictable structure, which are assembled in vitro from defined constituents that behave with the properties of natural chromosomes. Artificial chromosomes were first assembled in budding yeast and have since been useful in many aspects of yeast genetics. Several attempts have been made at building artificial chromosomes in mammals, although these have been met with limited success. Consequently, mini-chromosomes of defined structure have been developed to address questions regarding mammalian chromosome function and for biotechnological applications. Here we review progress in these areas and consider how it influences plans to build artificial chromosomes in plants and parasites.  相似文献   

13.
Bacterial genomics   总被引:1,自引:0,他引:1  
Abstract: During the last decade, great advances have been made in the study of bacterial genomes which is perhaps better described by the term bacterial genomics. The application of powerful techniques, such as pulsed-field gel electrophoresis of macro-restriction fragments of genomic DNA, has freed the characterisation of the chromosomes of many bacteria from the constraints imposed by classical genetic analysis. It is now possible to analyse the genome of virtually every microorganism by direct molecular methods and to construct detailed physical and gene maps. In this review, the various practical approaches are compared and contrasted, and some of the emerging themes of bacterial genomics, such as the size, shape, number and organisation of chromosomes are discussed.  相似文献   

14.
The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.  相似文献   

15.
A human chromosome 3-specific cosmid library was constructed from a somatic cell hybrid containing human chromosome 3 as its only human component. This library was screened to identify 230 human recombinants which contained an average insert size of 37 kilobases. DNA prepared from 54 of these cosmids, representing 2000 kilobases of human DNA, was then tested for restriction endonuclease sites for EcoRI, HindIII, KpnI, XhoI, and DraI, as well as those of the rare-cutting restriction endonucleases NotI, SfiI, NruI, MluI, SacII, and BssHII. Sites for the latter enzymes were much more abundant than would be expected from theoretical calculations, reflecting non-random clustering of these sites. This has important implications for the use of these enzymes in the construction of physical maps of chromosomes. Some individual cosmids contained large numbers of rare sites, offering an alternative means of physically mapping chromosomes based upon identifying clusters of rare restriction sites. These clusters appear to be spaced an average of 1000 kb apart.  相似文献   

16.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes.Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination,homologous chromosome synapsis and reductional chromosome segregation to occur.In mammalian cells,DNA physically associates with histones to form chromatin,which can be modified by methylation,phosphorylation,ubiquitination and acetylation to help regulate higher order chromatin structure,gene expression,and chromosome organisation.Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells,and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase.This review will discuss the role of chromatin modifications in meiotic recombination,homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

17.
Structure of the human DNA ligase I gene.   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

18.
Evidence is presented for the assignment of seven fox genes on the basis of the segregation data for chromosomes and enzymes of fox x Chinese hamster somatic cell hybrids. The chromosomal loci of the following enzyme genes were determined: ME1, VFU1; ADK and PP, VFU4; PEPA, VFU5; GSR, VFU7; and MPI and GOT1, VFU15. The localization of these genes now extends the fox genetic map to 22 mapped genes. Based on comparative analysis of mammalian genetic maps, karyotype evolution in Carnivora is discussed.  相似文献   

19.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chro- mosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA phys- ically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

20.
A method for linking genomic sequences cloned in yeast artificial chromosomes (YACs) has been tested using Caenorhabditis elegans as a model system. Yeast clones carrying YACs with repeated sequences were selected from a C. elegans genomic library, total DNA was digested with restriction enzymes, transferred to nylon membranes and probed with a variety of repetitive DNA probes. YAC clones that overlap share common bands with one or more repetitive DNA probes. In 159 YAC clones tested with one restriction enzyme and six probes 28 overlapping clones were detected. The advantages and limitations of this method for construction of YAC physical maps is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号