首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter jejuni has a general N-linked glycosylation pathway, encoded by the pgl gene cluster. In C. jejuni, a heptasaccharide is transferred from an undecaprenyl pyrophosphate donor [GalNAc-alpha1,4-GalNAc-alpha1,4-(Glcbeta1,3)-GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac-alpha1-PP-undecaprenyl, where Bac is bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose)] to the asparagine side chain of target proteins at the Asn-X-Ser/Thr motif. In this study, we have cloned, overexpressed in Escherichia coli, and purified PglC, the glycosyl-1-phosphate transferase responsible for the first step in the biosynthesis of the undecaprenyl-linked heptasaccharide donor. In addition, we report the first synthetic route to uridine 5'-diphosphobacillosamine. Using the uridine 5'-diphosphobacillosamine and undecaprenyl phosphate, we demonstrate the ability of PglC to produce undecaprenyl pyrophosphate bacillosamine using radiolabeled HPLC and mass spectral analysis. In addition, we revealed that PglC does not accept uridine 5'-diphospho-N-acetylglucosamine or uridine 5'-diphospho-N-acetylgalactosamine as substrates but will accept uridine 5'-diphospho-6-hydroxybacillosamine, an analogue of bacillosamine that retains the C-6 hydroxyl functionality from the biosynthetic precursor. The in vitro characterization of PglC as a bacillosamine 1-phosphoryl transferase provides direct evidence for the early steps in the C. jejuni N-linked glycosylation pathway, and the coupling of PglC with the latter glycosyltransferases (PglA, PglJ, PglH, and PglI) allows for the "one-pot" chemoenzymatic synthesis of the undecaprenyl pyrophosphate heptasaccharide donor.  相似文献   

2.
An enzyme-linked immunoassay coupled with a tyrosinase modified enzyme electrode was used for rapid detection of Campylobacter jejuni. The immunomagnetic separation (IMS) method was investigated to achieve optimal isolation of C. jejuni cells. Eight types of beads with three different sizes and function groups were coated with anti-C. jejuni to isolate C. jejuni from the sample solution. Bead size and coating methods were found to be major factors that influenced the capture efficacy. Streptavidin-labeled beads (2.8 μm) provided the greatest capture ability. Three blocking reagents were tested to minimize non-specific binding. Bovine serum albumin (BSA) showed the best blocking capability. Two IMS formats were tested. Competitive immunoassay cut the detection time to 1.5 h, but the detection limit was relatively high (106 CFU/ml). This system was evaluated using C. jejuni pure culture and poultry samples inoculated with C. jejuni. This detection method for C. jejuni could be completed within 2.5 h and had a detection limit of 2.1×104 CFU/ml. No significant difference was found between pure culture samples and poultry samples (P>0.01). A linear relationship was found between C. jejuni cell numbers and the peak current ratio in a range of 102–107 CFU/ml (R2=0.94).  相似文献   

3.
Abstract The peptidoglycan layer of bacterial cell walls is biosynthesised using a lipid carrier undecaprenyl phosphate to assemble and transport the MurNAc(GlcNAc)-pentapeptide precursor. Similar lipid-linked cycles are involved in the biosynthesis of other bacterial exopolysaccharides and eukaryotic asparagine-linked glycoproteins, the latter involving the structurally related dolichyl phosphate as a lipid carrier. Recent protein sequence data and common inhibitors of the bacterial and eukaryotic systems have revealed functional similarities between the two systems. Biological and physical studies on the lipid carriers themselves have provided clues to their role in oligosaccharide translocation, but have not revealed significant differences in function between undecaprenyl phosphate and dolichyl phosphate. The presence of dolichyl phosphate and a family of saturated isoprenoid lipids in Archaebacteria suggests a possible evolutionary link between the two systems.  相似文献   

4.
One or more mevalonate derivatives of non-sterol type have beenproposed to be of indispensable importance for cell growth.Conceivable mevalonate-dependent mechanisms involved in growthcontrol are farnesylation of Ras proteins, regulation of c-mycexpression, and N-linked glycosylation of the IGF-1 receptor.The latter mechanism might be rate-limited by dolichyl phosphate,which acts as a donor of oligosaccharides in glycoprotein synthesisin the endoplasmic reticulum. In order to study the significancefor cell proliferation of the three aforementioned mevalonate-dependentprocessings, their inhibitory response due to mevalonate deprivationwas explored and compared with the effect on DNA synthesis inthe malignant melanoma cell line SK-MEL-2. We found that mevalonatedepletion due to treatment with 3 µM lovastatin for 24h, which efficiently growth-arrested the cells, hardly at allaffected the expression of c-myc, and although Ras prenylationwas inhibited by 50%, the most pronounced effect of lovastatinwas seen on N-linked glycosylation of IGF-1 receptors, whichwas inhibited by more than 95%. The order and magnitude of thedecreased IGF-1 receptor glycosylation, which was followed bya decreased expression of IGF-1 receptors at the cell membrane,correlated well with the inhibition of DNA synthesis. We investigatedwhether dolichol, and in particular dolichyl phosphate, throughits participation in N-linked glycosylation, act as regulatorsof IGF-1 receptor expression. First, we could confirm that exogenousdolichol became phosphorylated and in this form took part inthe glycosylation processing. Secondly, we showed that dolichylphosphate, in a dose-dependent manner, could increase the numberof IGF-1 receptors at the cell membrane, simultaneously as DNAsynthesis was stimulated. Taken together, our results providedirect evidence for an important role of dolichyl phosphateas a regulator of cell growth through limiting N-linked glycosylationof the IGF-1 receptor. dolichyl phosphate IGF-1 receptor c-myc N-linked glycosylation Ras  相似文献   

5.
Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.  相似文献   

6.
N-linked glycosylation is a critical determinant of protein structure and function, regulating processes such as protein folding, stability and localization, ligand-receptor binding and intracellular signalling. TβRII [type II TGF-β (transforming growth factor β) receptor] plays a crucial role in the TGF-β signalling pathway. Although N-linked glycosylation of TβRII was first demonstrated over a decade ago, it was unclear how this modification influenced TβRII biology. In the present study, we show that inhibiting the N-linked glycosylation process successfully hinders binding of TGF-β1 to TβRII and subsequently renders cells resistant to TGF-β signalling. The lung cancer cell line A549, the gastric carcinoma cell line MKN1 and the immortal cell line HEK (human embryonic kidney)-293 exhibit reduced TGF-β signalling when either treated with two inhibitors, including tunicamycin (a potent N-linked glycosylation inhibitor) and kifunensine [an inhibitor of ER (endoplasmic reticulum) and Golgi mannosidase I family members], or introduced with a non-glycosylated mutant version of TβRII. We demonstrate that defective N-linked glycosylation prevents TβRII proteins from being transported to the cell surface. Moreover, we clearly show that not only the complex type, but also a high-mannose type, of TβRII can be localized on the cell surface. Collectively, these findings demonstrate that N-linked glycosylation is essentially required for the successful cell surface transportation of TβRII, suggesting a novel mechanism by which the TGF-β sensitivity can be regulated by N-linked glycosylation levels of TβRII.  相似文献   

7.
A new molecular filtration based method for the recovery and fractionation of cell envelope fragments from Campylobacter jejuni has been developed. The process, which uses a novel combination of filtration and selective solubilization, offers major advantages over currently available methods. Inner and outer membranes associated with cell envelope fragments of Campylobacter jejuni, recovered onto a regenerated cellulose filter under 1 bar negative pressure, can be sequentially treated with Triton X-100 and Triton X-100/EDTA to yield a fraction principally composed of solubilised Outer Membrane Protein (OMP). The method is rapid, efficient and uses low cost easily available equipment to produce electrophoretic patterns and protein yields similar to the standard procedures used by previous workers.  相似文献   

8.
A crude membrane preparation of the unicellular green alga Chlamydomonas reinhardii was found to catalyse the incorporation of D-[14C]mannose from GDP-D-[14C]-mannose into a chloroform/methanol-soluble compound and into a trichloroacetic acid-insoluble polymer fraction. The labelled lipid revealed the chemical and chromatographic properties of a short-chain (about C55-C65) alpha-saturated polyprenyl mannosyl monophosphate. In the presence of detergent both long-chain (C85-C105) dolichol phosphate and alpha-unsaturated undecaprenyl phosphate (C55) were found to be effective as exogenous acceptors of D-mannose from GDP-D-[14C]mannose to yield their corresponding labelled polyprenyl mannosyl phosphates. Exogenous dolichyl phosphate stimulated the incorporation of mannose from GDP-D-[14C]mannose into the polymer fraction 5-7-fold, whereas the mannose moiety from undecaprenyl mannosyl phosphate was not further transferred. Authentic dolichyl phosphate [3H]mannose and partially purified mannolipid formed from GDP-[14C]mannose and exogenous dolichyl phosphate were found to function as direct mannosyl donors for the synthesis of labelled mannoproteins. These results clearly indicate the existence of dolichol-type glycolipids and their role as intermediates in transglycosylation reactions of this algal system. Both the saturation of the alpha-isoprene unit and the length of the polyprenyl chain may be regarded as evolutionary markers.  相似文献   

9.
从湖南、湖北、云南等地磷矿开采场的土壤样品中筛选到一株溶磷能力较强的菌株P21,结合生理生化指标和16S rDNA序列分析鉴定其属于草生欧文氏菌菠萝变种(Erwinia herbicola var.ananas).该菌能溶解磷酸三钙、羟基磷灰石、磷酸铁、磷酸锌,其中对磷酸三钙和羟基磷灰石的每升液体培养基溶磷量(P2O5)分别高达1206.20mg、529.67mg.溶磷菌草生欧文氏菌菠萝变种P21对产地不同的8种磷矿石溶解能力不同,对云南晋宁和昆阳、四川雅安、江苏锦屏等地磷矿石有较强的溶解能力,每升液体培养基溶磷量分别为96.64mg、78.46mg、67.07mg、65.24mg,对其它产地的磷矿石溶解能力较差.实验表明,培养液的pH下降与溶磷菌P21的溶磷量无直接关系.  相似文献   

10.
The glycosylphosphatidylinositol (GPI) anchor, potentially capable of generating a number of second messengers, such as diacylglycerol, phosphatidic acid, and inositol phosphate glycan, has been postulated to be involved in signal transduction in various cell types, including T-cells. We have identified a panel of T-cell hybridoma mutants that are defective at various steps of GPI anchor biosynthesis. Since they were derived from a functional T-T hybridoma, we were able to determine the precise role of the GPI anchor in T-cell activation. Two mutants were chosen for this analysis. The first mutant is defective at the first step of GPI anchor biosynthesis, i.e. in the transfer of N-acetylglucosamine to a phosphatidylinositol acceptor. Thus, it cannot form any GPI precursors or GPI-like compounds. Interestingly, this mutant can be activated by antigen, superantigen, and concanavalin A in a manner comparable to the wild-type hybridoma. These data strongly suggest that the GPI anchor, its precursor, or its potential cleavage product, inositol phosphate glycan, is not required for the early phase of T-cell activation. The second mutant is able to synthesize the first two GPI precursors, but is not able to add mannose residues to them due to a deficiency in dolichol-phosphate-mannose (Dol-P-Man) biosynthesis. Unexpectedly, all of the Dol-P-Man mutants are defective in activation by antigen, suprantigen, and concanavalin A despite normal T-cell receptor expression. Here, we show that the activation defect was due to a pleiotropic glycosylation abnormality because Dol-P-Man is required for both GPI anchor and N-linked oligosaccharide biosynthesis. When the yeast Dol-P-Man synthase gene was stably transfected into the mutants, full expression of surface GPI-anchored proteins was restored. However, N-linked glycosylation was either partially or completely corrected in different transfectants. Reconstitution of activation defects correlates well with the status of N-linked glycosylation, but not with the expression of GPI-anchored proteins. These results thus reveal an unexpected role of N-linked glycosylation in T-cell activation.  相似文献   

11.
Human umbilical vein endothelial cells were incubated with Bretschneider and St. Thomas II cardioplegic solution followed by a stimulation with cumene hydroperoxide (CHPO), which was used as an oxygen radicals generating agent. A statistically significant decrease of intracellular high energy phosphates (adenosine-5-triphosphate: ATP; creatine phosphate; CP) compared to controls was observed in response to Bretschneider cardioplegia and CHPO. Furthermore, significant rises in prostaglandin I2 (prostacyclin; PGI2) production and lipidperoxidation were measured. The authors failed to record such alterations of endothelial cell metabolism for the St. Thomas II cardioplegic solution. They could also demonstrate that the cellular protection against oxygen radicals exerted by the St. Thomas II solution is attributable to procaine. The enhanced cytotoxicity of CHPO observed in presence of the Bretschneider solution was found to be partially caused by its constituent -histidine, which led to significant decreases of high energy phosphates and increased lipidperoxidation when cells were subsequently treated with CHPO. However, alterations of high energy phosphate content initiated by CHPO and amplified by the Bretschneider solution could not be inhibited by adding procaine. Simultaneous pretreatment of cells with the Bretschneider solution and procaine and stimulation with CHPO resulted in decreases of ATP and CP, as observed using the Bretschneider cardioplegia alone.  相似文献   

12.
Twenty four reference strains (serotype a-h) belonging to the mutans group of streptococci were compared for DNA fragment patterns of rDNA after treatment with Hind III. It was shown that Streptococcus cricetus (serotype a), S. rattus (serotype b), and S. downei (serotype h) reveals comparatively homogeneous patterns while S. mutans (serotype c, e and f) exhibits differences between the different serotypes as well as within single serotypes. S. sobrinus had an intermediary diversity. These data support the previous findings that S. mutans is heterogeneous at the serological, biochemical and genetical level.  相似文献   

13.
Membrane isolated from Bacillus subtilis strain 168 incorporated GlcNAc from UDP-GlcNAc directly onto undecaprenyl phosphate via transphosphorylation and subsequent transglucosylations. Chain lengths of 6, 4, and 1 units of GlcNAc were found. Approximately 80% of the isotope incorporated was extracted into chloroform:methanol (2:1 v/v), and could be distinguished from the undecaprenyl disaccharide cell wall intermediate by a different elution pattern on DEAE-cellulose (acetate form). The GlcNAc-lipid(s) were eluted from a similar column in chloroform:methanol:water (10:10:3, v/v) with 6 mM NH4COOH indicating a pyrophosphate linkage between the lipid and the GlcNAc. The GlcNAc-lipid(s) were not degraded by conditions which completely deacylated [32P]glyceryl phospholipids, but were rapidly hydrolyzed by mild acid treatment (0.005 N HCl, 90 degrees) with the release of oligosaccharide phosphate (typical of sugars linked to undecaprenyl pyrophosphate). Catalytic hydrogenation of the GlcNAc-lipid(s) resulted in the release of water-soluble sugar phosphate. Under these same conditions, undecaprenyl pyrophosphate and undecaprenyl disaccharide cell wall intermediate were similarly effected while [32P]glyceryl phospholipids remained intact. The formation of GlcNAc-lipid(s) in vitro was inhibited if membranes were prepared from cells previously treated with bacitracin. Thus, the GlcNAc-lipid(s) has the properties of undecaprenyl poly(N-acetylglucosaminyl pyrophosphate) and may represent a new synthetic role of the polyisoprenyl lipid in B. subtilis.  相似文献   

14.
Glycosylation of proteins can modulate their function in a striking variety of systems, including immune responses, neuronal activities and development. The Drosophila protein, Chaoptin (Chp), is essential for the development and maintenance of photoreceptor cells. This protein is heavily glycosylated, but the possible role of this glycosylation is not well-understood. Here we show that mutations introduced into about 1/3 of 16 potential N-linked glycosylation sites within Chp impaired its cell adhesive activities when expressed in Drosophila S2 cells. Mutation of 2/3 of the glycosylation sites resulted in a marked decrease in Chp protein abundance. These results suggest that N-linked glycosylation of Chp is essential for its stability and activity.  相似文献   

15.
Polyprenyl phosphates of different structure were prepared and their ability to serve as sugar acceptors in the biosynthesis of O-specific polysaccharides of Salmonella anatum was investigated. It was demonstrated that C30-C80-polyprenyl phosphates with unsaturated alpha-isoprene unit were as active as natural acceptor (undecaprenyl phosphate) in this enzymic system. C15- and C100-polyprenyl phosphates of this series were less effective in O-antigen repeating unit formation. Citronellyl and dolichyl phosphates (derivatives of C10- and C105-polyprenols, respectively, with saturated alpha-isoprene unit) were poor substrates. For polymerization of repeating units, the polyprenol chain-length is of utmost importance: its shortening results in a marked drop in the efficiency of respective compounds as substrates.  相似文献   

16.
A recombinant vaccinia virus expressing canine interferon (IFN)-beta was constructed (vv/cIFN-beta). In rabbit kidney (RK13) and canine A72 cells infected with vv/cIFN-beta, the recombinant canine IFN-beta was detected in both cell extracts and supernatants, and the IFN activities of the culture supernatants were also detected. Inhibition of N-linked glycosylation by tunicamycin treatment indicated that the recombinant canine IFN-beta was modified by N-linked glycosylation in a different way between RK13 and A72 cells, and that N-linked glycosylation is essential for its secretion. The growth of vv/cIFN-beta at a low multiplicity of infection was inhibited by antiviral activity of canine IFN-beta, indicating that this recombinant virus could be used as a suicide viral vector.  相似文献   

17.
The aggregation program of Dictyostelium discoideum is extremely sensitive to the effects of tunicamycin when the drug is added to cells during the first few hours of starvation. Inhibition of development is observed with concentrations as low as 0.5 micrograms/ml, which cause only a 25%-30% inhibition of general N-linked glycosylation. However, 0.5 micrograms/ml tunicamycin can result in the total inhibition of N-linked glycosylation of specific, developmentally regulated, proteins, as exemplified by the glycoprotein 117 antigen. If added after the first hours of starvation, tunicamycin cannot inhibit aggregation even when present at 10 micrograms/ml, which maximally inhibits N-linked glycosylation. cAMP pulses can override the inhibitory effects of tunicamycin on cell aggregation. The data support the hypothesis that there is an early developmental pathway that is dependent on the N-linked glycosylation of one, or a small set of developmentally regulated proteins and that this pathway may involve the biogenesis of the chemotactic signalling system. In addition, the data raise questions as to the role of N-linked oligosaccharides in cell cohesion.  相似文献   

18.
Proteinase-activated receptor 1 (PAR(1)) induces activation of platelet and vascular cells after proteolytic cleavage of its extracellular N terminus by thrombin. In pathological situations, other proteinases may be generated in the circulation and might modify the responses of PAR(1) by cleaving extracellular domains. In this study, epitope-tagged wild-type human PAR(1) (hPAR(1)) and a panel of N-linked glycosylation-deficient mutant receptors were permanently expressed in epithelial cells (Kirsten murine sarcoma virus-transformed rat kidney cells and CHO cells). We have analyzed the role of N-linked glycosylation in regulating proteinase activation/disarming and cell global expression of hPAR(1). We reported for the first time that glycosylation in the N terminus of hPAR(1) downstream of the tethered ligand (especially Asn(75)) governs receptor disarming to trypsin, thermolysin, and the neutrophil proteinases elastase and proteinase 3 but not cathepsin G. In addition, hPAR(1) is heavily N-linked glycosylated and sialylated in epithelial cell lines, and glycosylation occurs at all five consensus sites, namely, Asn(35), Asn(62), Asn(75), Asn(250), and Asn(259). Removing these N-linked glycosylation sequons affected hPAR(1) cell surface expression to varying degrees, and N-linked glycosylation at extracellular loop 2 (especially Asn(250)) of hPAR(1) is essential for optimal receptor cell surface expression and receptor stability.  相似文献   

19.
The N-linked glycosylation is a ubiquitous protein modification in eukaryotic cells. During the N-linked glycan synthesis, the precursor Glc(3)Man(9)GlcNAc(2) is processed by endoplasmic reticulum (ER) glucosidases I, II and α1,2-mannosidase, before transporting to the Golgi complex for further structure modifications. In fungi of medical relevance, as Candida albicans and Aspergillus, it is well known that ER glycosidases are important for cell fitness, cell wall organization, virulence, and interaction with the immune system. Despite this, little is known about these enzymes in Sporothrix schenckii, the causative agent of human sporotrichosis. This limited knowledge is due in part to the lack of a genome sequence of this organism. In this work we used degenerate primers and inverse PCR approaches to isolate the open reading frame of S. schenckii ROT2, the encoding gene for α subunit of ER glucosidase II. This S. schenckii gene complemented a Saccharomyces cerevisiae rot2Δ mutant; however, when expressed in a C. albicans rot2Δ mutant, S. schenckii Rot2 partially increased the levels of α-glucosidase activity, but failed to restore the N-linked glycosylation defect associated to the mutation. To our knowledge, this is the first report where a gene involved in protein N-linked glycosylation is isolated from S. schenckii.  相似文献   

20.
The human ether-à-go-go-related gene (HERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel in the heart. We previously showed that HERG channel protein is modified by N-linked glycosylation. HERG protein sequence contains two extracellular consensus sites for N-linked glycosylation (N598, N629). In this study, we used the approaches of site-directed mutagenesis and biochemical modification to inhibit N-linked glycosylation and studied the role of glycosylation in the cell surface expression and turnover of HERG channels. Our results show that N598 is the only site for N-linked glycosylation and that glycosylation is not required for the cell surface expression of functional HERG channels. In contrast, N629 is not used for glycosylation, but mutation of this site (N629Q) causes a protein trafficking defect, which results in its intracellular retention. Pulse-chase experiments show that the turnover rate of nonglycosylated HERG channel is faster than that of the glycosylated form, suggesting that N-linked glycosylation plays an important role in HERG channel stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号