首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.  相似文献   

2.
Ordered and amorphous protein aggregation causes numerous diseases. Tobacco mosaic virus coat protein for many decades serves as the classical model of ordered protein aggregation ("polymerization"). It was also found to be highly prone to heat-induced amorphous aggregation and the rate of this aggregation could be easily manipulated by changes in solution ionic strength and temperature. Here, we report that rapid amorphous aggregation of this protein can be induced at 25 degrees C in phosphate buffer by low micromolar (start at about 15 microM) concentrations of cationic surfactant cetyltrimethylammonium bromide. At equilibrium four surfactant molecules bound to the protein subunit. As judged by circular dichroism and fluorescence spectroscopy data, the coat protein molecules retained their native structure upon the cetyltrimethylammonium bromide induced aggregation. No aggregation was observed at the higher surfactant concentrations (above 300 microM). Micromolar concentrations of anionic surfactant sodium dodecylsulfate rapidly reversed the cetyltrimethylammonium bromide induced aggregation of the coat protein due to formation of mixed surfactant-surfactant micelles. Cetyltrimethylammonium bromide (100-300 microM) also induced the reversible intact tobacco mosaic virus virion aggregation. The possible liability to the cetyltrimethylammonium bromide induced amorphous aggregation of other ordered aggregate-producing proteins has been discussed.  相似文献   

3.
The accumulation of aggregated protein in the cell is associated with the pathology of many diseases and constitutes a major concern in protein production. Intracellular aggregates have been traditionally regarded as nonspecific associations of misfolded polypeptides. This view is challenged by studies demonstrating that, in vitro, aggregation often involves specific interactions. However, little is known about the specificity of in vivo protein deposition. Here, we investigate the degree of in vivo co-aggregation between two self-aggregating proteins, Abeta42 amyloid peptide and foot-and-mouth disease virus VP1 capsid protein, in prokaryotic cells. In addition, the ultrastructure of intracellular aggregates is explored to decipher whether amyloid fibrils and intracellular protein inclusions share structural properties. The data indicate that in vivo protein aggregation exhibits a remarkable specificity that depends on the establishment of selective interactions and results in the formation of oligomeric and fibrillar structures displaying amyloid-like properties. These features allow prokaryotic Abeta42 intracellular aggregates to act as effective seeds in the formation of Abeta42 amyloid fibrils. Overall, our results suggest that conserved mechanisms underlie protein aggregation in different organisms. They also have important implications for biotechnological and biomedical applications of recombinant polypeptides.  相似文献   

4.
Influenza virus may be purified and rendered free of extraneous proteins by precipitation and aggregation with polyethylene glycol at polymer concentrations of 1 to 4%. The precipitated virus is superior antigenically to the virus in monomeric and in the ether dissociated forms. When the virus is precipitated at polyethylene glycol concentrations of 5% and higher the virus is not aggregated and is associated with extraneous protein which co-precipitates with the infectious agent.  相似文献   

5.
The nucleocapsid protein N of Chandipura virus is prone to aggregation in vitro. We have shown that this aggregation occurs in two phases in a nucleation-dependent manner. Electron microscopy suggests that the aggregated state may have a ring-like structure. Using a GFP fusion, we have shown that the N-protein also aggregates in vivo. The P-protein suppresses the N-protein aggregation efficiently, both in vitro and in vivo. Increased lag phase in the presence of the P-protein suggests that chaperone-like action of the P-protein occurs before the nucleation event. The P-protein, however, does not exert any chaperone-like action against other proteins, suggesting that it binds to the N-protein specifically. Surface plasmon resonance and fluorescence enhancement indeed suggest that the P-protein binds tightly to the native N-protein. The P-protein is thus an N-protein-specific chaperone which inhibits the nucleation phase of N-protein aggregation, thus keeping a pool of encapsidation-competent N-protein for viral maturation.  相似文献   

6.
Foot-and-mouth disease virus structural protein VP1 elicits neutralizing and protective antibody and is probably the viral attachment protein which interacts with cellular receptor sites on cultured cells. To study the relationships between epitopes on the molecule related to neutralization and cell attachment, we tested monoclonal antibodies prepared against type A12 virus, isolated A12 VP1, and a CNBr-generated A12 VP1 fragment for neutralization and effect on viral absorption. The antibodies selected for analysis neutralized viral infectivity with varying efficiencies. One group of antibodies caused a high degree of viral aggregation and inhibited the adsorption of virus to cells by 50 to 70%. A second group of antibodies caused little or no viral aggregation but inhibited the adsorption of virus to cells by 80 to 90%. One antibody, which is specific for the intact virion, caused little viral aggregation and had no effect on the binding of virus to specific cellular receptor sites. Thus, at least three antigenic areas on the surface of foot-and-mouth disease virus which were involved in neutralization were demonstrated. One of the antigenic sites appears to have been responsible for interaction with the cellular receptor sites on the surface of susceptible cells.  相似文献   

7.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

8.
C Chang  S Zhou  D Ganem    D N Standring 《Journal of virology》1994,68(8):5225-5231
Hepadnaviruses encode a single core (C) protein which assembles into a nucleocapsid containing the polymerase (P) protein and pregenomic RNA during viral replication in hepatocytes. We examined the ability of heterologous hepadnavirus C proteins to cross-oligomerize. Using a two-hybrid assay in HepG2 cells, we observed cross-oligomerization among the core proteins from hepatitis B virus (HBV), woodchuck hepatitis virus, and ground squirrel hepatitis virus. When expressed in Xenopus oocytes, in which hepadnavirus C proteins form capsids, the C polypeptides from woodchuck hepatitis virus and ground squirrel hepatitis virus, but not duck hepatitis B virus, can efficiently coassemble with an epitope-tagged HBV core polypeptide to form mixed capsids. However, when two different core mRNAs are coexpressed in oocytes the core monomers show a strong preference for forming homodimers rather than heterodimers. This holds true even for coexpression of two HBV C proteins differing only by an epitope tag, suggesting that core monomers are not free to diffuse and associate with other monomers. Thus, mixed capsids result from aggregation of different species of homodimers.  相似文献   

9.
The states of aggregation of alfalfa mosaic virus (AMV) protein have been characterized by sedimentation velocity experiments and electron microscopy. The main association product is a spherical particle with an s value of about 30S. It is highly likely that the assembly of this particle starts with dimers of the 25000 molecular mass unit resulting in an icosahedral particle made of 30 dimers. No intermediate aggregation products have been detected. The clustering pattern of the protein in the cylindrical part of the AMV capsid favours the concept of dimers as the active assembling units.  相似文献   

10.
ABSTRACT

Influenza virus may be purified and rendered free of extraneous proteins by precipitation and aggregation with polyethylene glycol at polymer concentrations of 1 to 4%. The precipitated virus is superior antigenically to the virus in monomeric and in the ether dissociated forms. When the virus is precipitated at polyethylene glycol concentrations of 5% and higher the virus is not aggregated and is associated with extraneous protein which co-precipitates with the infectious agent.  相似文献   

11.
Understanding and controlling aggregation is an essential aspect in the development of pharmaceutical proteins to improve product yield, potency and quality consistency. Even a minute quantity of aggregates may be reactogenic and can render the final product unusable. Self‐assembly processing of virus‐like particles (VLPs) is an efficient method to quicken the delivery of safe and efficacious vaccines to the market at low cost. VLP production, as with the manufacture of many biotherapeutics, is susceptible to aggregation, which may be minimized through the use of accurate and practical mathematical models. However, existing models for virus assembly are idealized, and do not predict the non‐native aggregation behavior of self‐assembling viral subunits in a tractable nor useful way. Here we present a mechanistic mathematical model describing VLP self‐assembly that accounts for partitioning of reactive subunits between the correct and aggregation pathways. Our results show that unproductive aggregation causes up to 38% product loss by competing favorably with the productive nucleation of self‐assembling subunits, therefore limiting the availability of nuclei for subsequent capsid growth. The protein subunit aggregation reaction exhibits an apparent second‐order concentration dependence, suggesting a dimerization‐controlled agglomeration pathway. Despite the plethora of possible assembly intermediates and aggregation pathways, protein aggregation behavior may be predicted by a relatively simple yet realistic model. More importantly, we have shown that our bioengineering model is amenable to different reactor formats, thus opening the way to rational scale‐up strategies for products that comprise biomolecular assemblies. Biotechnol. Bioeng. 2010;107: 550–560. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
To gain more insight into the mechanisms of heating-induced irreversible macroscopic aggregation of the tobacco mosaic virus (TMV) coat protein (CP), the effects of pH and ionic strength on this process were studied using turbidimetry, CD spectroscopy, and fluorescence spectroscopy. At 42 degrees C, the TMV CP passed very rapidly (in less than 15s) into a slightly unfolded conformation, presumably because heating disordered a segment of the subunit where the so-called hydrophobic girdle of the molecule resides. We suppose that the amino acid residues of this girdle are responsible for the aberrant hydrophobic interactions between subunits that initiate macroscopic protein aggregation. Its rate increased by several thousands of times as the phosphate buffer molarity was varied from 20 to 70 mM, suggesting that neutralization of strong repulsive electrostatic interactions of TMV CP molecules at high ionic strengths is a prerequisite for amorphous aggregation of this protein.  相似文献   

13.
The specific mechanisms of charged polymer modulation of retrovirus transduction were analyzed by characterizing their effects on virus transport and adsorption. From a standard colloidal perspective two mechanisms, charge shielding and virus aggregation, can potentially account for the experimentally observed changes in adsorption behavior and biophysical parameters due to charged polymers. Experimental testing revealed that both mechanisms could be at work depending on the characteristics of the cationic polymer. All cationic polymers enhanced adsorption and transduction via charge shielding; however, only polymers greater than 15 kDa in size were capable of enhancing these processes via the virus aggregation mechanism, explaining the higher efficiency enhancement of the high molecular weight molecules. The role of anionic polymers was also characterized and they were found to inhibit transduction via sequestration of cationic polymers, thereby preventing charge shielding and virus aggregation. Taken together, these findings suggest the basis for a revised physical model of virus transport that incorporates electrostatic interactions through both virus-cell repulsive and attractive interactions, as well as the aggregation state of the virus.  相似文献   

14.
The envelope protein of hepatitis B virus carrying the surface antigen, HBsAg, has the unique property of mobilizing cellular lipids into spherical or elongated particles, about 22 nm in diameter, which are secreted from mammalian cells. We have created mutant envelope proteins by insertion of various sequences of different lengths into two regions of the S gene encoding the major envelope protein. S genes carrying inserts in phase with HBsAg were expressed in mouse L cells from the simian virus 40 early promoter. Various single or double inserts in the two major hydrophilic domains of HBsAg were compatible with secretion of 22-nm particles. In all mutant envelope proteins studied, the HBsAg domains required for intracellular aggregation appeared to be intact. However, assembly into particles was not sufficient to assure transport into the extracellular space. The 22-nm HBsAg particle may be a useful vehicle for the export and presentation of foreign peptide sequences.  相似文献   

15.
Cowpea chlorotic mottle virus (CCMV), which is stable at pH 5.0, has been modified at this pH with 0.5--0.7 pyridoxal 5'-phosphate molecules per protein subunit. The fluorescence properties of the labelled CCMV protein in different aggregation states of the virus provide information about the labelled part of the protein and the changes induced in its environment, when the nucleo-protein particles are swollen or dissociated. Fluorescence excitation and emission spectra indicate the presence of radiationless energy transfer from the aromatic amino acid residues to the label. Comparison of the fluorescence lifetimes of the labelled and the unlabelled protein confirms the existence of energy transfer. The mobility of the labelled part, which can be estimated from the fluorescence polarization of pyridoxal phosphate chromophore, is higher than expected from the dimensions of the virus and the protein subunits. Polarization values and the fluorescence lifetimes depend on the presence of small amounts of NaCl or MgCl2 in the buffer solution at pH 7.5. This is due to structural changes in the vicinity of the pyridoxal phosphate label of the RNA and of the protein part.  相似文献   

16.
The nucleocapsid protein (N) and the phosphoprotein (P) of nonsegmented negative-strand (NNS) RNA viruses interact with each other to accomplish two crucial events necessary for the viral replication cycle. First, the P protein binds to the aggregation prone nascent N molecules maintaining them in a soluble monomeric (N(0)) form (N(0)-P complex). It is this form that is competent for specific encapsidation of the viral genome. Second, the P protein binds to oligomeric N in the nucleoprotein complex (N-RNA-P complex), and thereby facilitates the recruitment of the viral polymerase (L) onto its template. All previous attempts to study these complexes relied on co-expression of the two proteins in diverse systems. In this study, we have characterised these different modes of N-P interaction in detail and for the first time have been able to reconstitute these complexes individually in vitro in the chandipura virus (CHPV), a human pathogenic NNS RNA virus. Using a battery of truncated mutants of the N protein, we have been able to identify two mutually exclusive domains of N involved in differential interaction with the P protein. An unique N-terminal binding site, comprising of amino acids (aa) 1-180 form the N(0)-P interacting region, whereas, C-terminal residues spanning aa 320-390 is instrumental in N-RNA-P interactions. Significantly, the ex-vivo data also supports these observations. Based on these results, we suggest that the P protein acts as N-specific chaperone and thereby partially masking the N-N self-association region, which leads to the specific recognition of viral genome RNA by N(0).  相似文献   

17.
The effect of protein aggregates on the aggregation of d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during unfolding and refolding has been studied. The aggregation of GAPDH follows a sigmoid course. The presence of protein aggregates increases the aggregation rate during unfolding and refolding of GAPDH but does not change the extent of aggregation and the final renaturation yield. It is suggested that protein aggregates function as seeds for aggregation via hydrophobic interaction with only GAPDH folding intermediates destined to aggregate and do not affect the distribution between pathways leading to correct folding and aggregation. Moreover, two different proteins do not interfere with each other during their simultaneous refolding together in a buffer. These findings provide insight into a mechanism by which cells prevent protein folding against the interference from aggregation of other proteins.  相似文献   

18.
Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile virus and Japanese encephalitis virus, which host range includes mainly mosquitoes and birds, although infections in humans have been also documented, thus warning about USUV as a potential health threat. Circulation of USUV in Africa was documented more than 50 years ago, but it was not until the last decade that it emerged in Europe causing episodes of avian mortality and some human severe cases. Since autophagy is a cellular pathway that can play important roles on different aspects of viral infections and pathogenesis, the possible implication of this pathway in USUV infection has been examined using Vero cells and two viral strains of different origin. USUV infection induced the unfolded protein response, revealed by the splicing of Xbp-1 mRNA. Infection with USUV also stimulated the autophagic process, which was demonstrated by an increase in the cytoplasmic aggregation of microtubule-associated protein 1 light chain 3 (LC3), a marker of autophagosome formation. In addition to this, an increase in the lipidated form of LC3, that is associated with autophagosome formation, was noticed following infection. Pharmacological modulation of the autophagic pathway with the inductor of autophagy rapamycin resulted in an increase in virus yield. On the other hand, treatment with 3-methyladenine or wortmannin, two distinct inhibitors of phosphatidylinositol 3-kinases involved in autophagy, resulted in a decrease in virus yield. These results indicate that USUV virus infection upregulates the cellular autophagic pathway and that drugs that target this pathway can modulate the infection of this virus, thus identifying a potential druggable pathway in USUV-infection.  相似文献   

19.
Core protein is one of the most conserved and immunogenic of the hepatitis C virus proteins. Several pieces of experimental evidence suggest its ability for formation of virus like particles alone or in association with other viral proteins in mammalian or yeast cells with great similarity to those detected in patient sera and liver extract. In this work we report an Escherichia coli-derived truncated hepatitis C core protein that is able to aggregate. SDS-PAGE and size exclusion chromatography patterns bring to mind the aggregation of monomers of recombinant protein Co.120. The Co.120 protein migrated with buoyant density of 1.28 g/cm(3) when analyzed using CsCl density gradient centrifugation. Spherical structures with an average diameter of 30 nm were observed using electron microscopy. We report here that VLPs are generated when the first 120 aa of HCV core protein are expressed in E. coli.  相似文献   

20.
The self-assembly process of tobacco mosaic virus protein (TMVP) was observed by rapid temperature-jump time-resolved solution X-ray small-angle scattering using synchrotron radiation. The temperature-jump device used for the X-ray measurements is rapid enough to cope with even the fastest-assembling process of TMVP, and accumulates data of reasonable signal-to-noise ratios with a minimum total counting time of 7.5 seconds. The measurements suggested that the 20 S disk of TMVP polymerized to stacked disks (short rods). The time to complete stacking varied from approximately 25 seconds to approximately 1200 seconds, depending on the solution condition and magnitude of the temperature gap. Higher protein concentration, ionic strength and temperature favoured faster association. The results were analysed in terms of a set of kinetic equations that describe the two-stage aggregation of TMVP with an equilibrium constant K1, and two rate constants k+2 and k-2 for association and dissociation of disks, respectively. The consistency of the analysis suggests that the TMVP assembly proceeds in two steps of: (1) the aggregation of A-proteins into double-layered disks; and (2) the stacking of double-layered disks. The kinetic analysis indicated that the stacking belongs to the lowest range of protein-protein interaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号