首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We evaluated the effect of dietary starch level on growth performance, feed utilization, whole-body composition and activity of selected key enzymes of intermediary metabolism in gilthead sea bream juveniles reared at 18 and 25 degrees C. A diet was formulated to contain 48% crude protein, 12% lipids and 30% gelatinized maize starch (diet 30GS). Two other diets were formulated to include the same level of ingredients as diet 30GS except for the gelatinized starch, which was included at 20% (diet 20GS) or 10% (diet 10GS). No adjustment to diet composition was otherwise made. Each diet was fed to triplicate groups of gilthead sea bream (30 g initial mass) for 8 weeks, on a pair-feeding scheme. The higher temperature improved growth performance but the opposite was true for feed efficiency and protein efficiency ratio. Independently of temperature, growth performance, feed efficiency and protein efficiency ratio were lower in fish fed diet 30GS. No effect of temperature or dietary starch level on whole-body composition was noticed. Hepatosomatic index and liver glycogen were higher at 18 degrees C and, within each temperature, in fish fed diet 30GS. Glycemia was not affected by temperature, but was lower in fish fed diet 10GS. Data on enzyme activities showed that increasing water temperature enhances liver glucokinase (GK) and pyruvate kinase (PK) activities, suggesting that gilthead sea bream is more apt to use dietary starch at higher temperatures. No effect of temperature was noticed on hexokinase (HK), fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) activities. Dietary starch enhanced PK and FBPase activities while depressed GDH activity, suggesting a lack of significant regulation of hepatic glucose utilization and production in this species. HK, GK and G6PD activities were unaffected by dietary composition. Irrespectively of water temperature, gelatinized starch may be included up to 20% in diets for gilthead sea bream juveniles; at higher dietary levels, growth and efficiency of feed utilization are depressed.  相似文献   

2.
A study was conducted to evaluate the effect of two dietary carbohydrate sources (waxy maize starch and glucose) on the metabolic adaptation of sea bass juveniles (initial weight: 24 g) to a heat shock treatment (temperature rise from 18 degrees C to 25 degrees C within 24 h). Two isonitrogenous and isolipidic diets were formulated to contain 20% waxy maize starch (WS diet) or 20% glucose (GLU diet). Triplicate groups of fish were fed to near satiation for 4 weeks at both temperatures (18 degrees C and 25 degrees C). Then, fish previously maintained at 18 degrees C were submitted to a heat shock (18 degrees C to 25 degrees C) and continued to be fed with the same diets during 1 more week. The higher water temperature significantly improved growth performance, feed efficiency, as well as protein efficiency ratio, independently of diet. At 25 degrees C, but not at 18 degrees C, growth of fish fed the WS diet was higher than that of fish fed the GLU diet. Plasma glucose levels were higher in sea bass fed the GLU diet and not influenced by water temperature. Fish fed a glucose diet or reared at high temperatures (25 degrees C) showed enhanced liver glycolytic, lipogenic and gluconeogenic capacities compared to fish fed a starch diet or reared at low temperatures (18 degrees C). For the majority of the enzymes studied, 1 week seemed to be enough time for metabolic adaptation in sea bass submitted to an acute heat shock. Irrespective of carbohydrate source, HSP70 gene expression was similar in both cold water (18 degrees C) and warm water (25 degrees C) acclimated sea bass. A weak down regulation was observed after heat shock only in fish fed the GLU diet. This suggests that HSP70 gene expression is not affected by the rearing temperature per se.  相似文献   

3.
不同糖源及糖水平对大菱鲆糖代谢酶活性的影响   总被引:4,自引:0,他引:4  
采用34双因素实验设计, 以初始质量为(8.060.08) g的大菱鲆幼鱼(Scophthalmus maximus L.)为对象, 研究在饲料中添加3种糖源(葡萄糖、蔗糖和糊精)及4个水平(0、5%、15%、28%)对大菱鲆肝脏糖酵解关键酶己糖激酶(HK)、葡萄糖激酶(GK)、磷酸果糖激酶(PFK)、丙酮酸激酶(PK)和糖异生关键酶磷酸烯醇式丙酮酸羧激酶(PEPCK)、1, 6-二磷酸果糖酶(FBPase)活性的影响。结果表明: 饲料糖添加量从0升高到15%时, 大菱鲆的糖酵解酶GK和PK活性随饲料葡萄糖或糊精含量的增加而增加; 当饲料中葡萄糖或糊精含量为28%时, GK和PK活性有下降的趋势。3种糖源的4个添加水平对HK和PFK活性均无显著影响(P 0.05)。添加不同水平的葡萄糖对大菱鲆糖异生途径的PEPCK活性无显著影响(P 0.05), 但在饲料中葡萄糖添加量为5%时显著促进了FBPase活性(P 0.05), 当葡萄糖添加量升高为15%或28%时, FBPase活性与对照组无显著差异(P 0.05)。糊精作为饲料糖源时抑制了大菱鲆肝脏FBPase和PEPCK的活性, 而添加不同水平的蔗糖对FBPase和PEPCK活性的影响均不显著(P 0.05)。总的来说, 从大菱鲆幼鱼肝脏糖代谢角度而言, 在饲料中添加15%的葡萄糖或糊精时, 可以有效促进大菱鲆肝脏糖酵解能力; 较添加葡萄糖, 糊精在促进大菱鲆肝脏糖酵解的同时对糖异生存在一定程度的抑制。蔗糖作为饲料糖源时, 仅在添加量为28%时显著促进糖酵解酶GK活性, 糖酵解其他酶活性以及糖异生酶活性均不受蔗糖水平的显著影响。    相似文献   

4.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

5.
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.  相似文献   

6.
The low dietary starch utilisation by rainbow trout (Oncorhynchus mykiss) may be attributed to a dysfunction of the nutritional regulation of the hepatic glucose/glucose-6-phosphate cycle. The present study was initiated to analyse the regulation of activity and gene expression of hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) by dietary carbohydrates in this species. We found that even a single meal containing 24% of glucose is sufficient to induce the GK expression (mRNA and activity) as in mammals. In contrast, although the inhibitory effect of dietary glucose on G6Pase expression is observed at the molecular level, the G6Pase activity is not significantly inhibited by dietary glucose. Thus, in contrast to the gluconeogenic G6Pase enzyme, a rapid adaptation of the hepatic glycolytic GK enzyme to dietary glucose seems effective in rainbow trout. These results suggest that in carnivorous rainbow trout, the liver is capable to strongly regulate the utilisation of glucose but not the synthesis of glucose.  相似文献   

7.
Rainbow trout is unable to utilize high levels of dietary carbohydrates and experiences hyperglycemia after consumption of carbohydrate-rich meals. Carbohydrates stimulate hepatic glycolytic activity, but gene expression of the rate-limiting gluconeogenic enzymes glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) remains high. Although there is significant mRNA expression and activity of gluconeogenic enzymes in trout intestine and kidney, the regulation of these enzymes by diet is not known. We tested the hypothesis that dietary carbohydrate modulates intestinal and renal G6Pase, FBPase and PEPCK. Fish were either fasted or fed isocaloric carbohydrate-free (CF) or high carbohydrate (HC) diets for 14 days. As expected, fish fed HC exhibited postprandial hyperglycemia and enhanced levels of hepatic glucokinase mRNA and activity. Dietary carbohydrates had no significant effect on the expression and activity of PEPCK, FBPase and G6Pase in all three organs. In contrast, fasting enhanced the activity, but not the mRNA expression of both hepatic and intestinal PEPCK, as well as intestinal FBPase. Therefore, the activity of rate-limiting gluconeogenic enzymes in trout can be modified by fasting, but not by the carbohydrate content of the diet, potentially causing hyperglycemia when fed high levels of dietary carbohydrates. In this species consuming low carbohydrate diets at infrequent intervals in the wild, fasting-induced increases in hepatic and intestinal gluconeogenic enzyme activities may be a key adaptation to prevent perturbations in blood glucose during food deprivation. Presented in part at Experimental Biology, April 2006, San Francisco, CA [Kirchner S., Panserat S., Kaushik S. and Ferraris R. FASEB-IUPS-2006 A667.6].  相似文献   

8.
The influence of the dietary macronutrient balance on the intermediary metabolism of common dentex (Dentex dentex L.) was evaluated. Four experimental diets combining high and low levels of macronutrients were formulated. Dentex fed on 43% protein had higher liver and muscle lipid content, corresponding with an increased hepatic G6PDH activity. This “excess” of hepatic lipids at higher protein levels could be used to obtain energy as would be reflected by hepatic HOAD. In the liver, 43% of dietary protein induced higher AlaAT and FBPase activities. Similarly, dentex fed on the P43C28 and P38C28 diets showed an increased hepatic and muscular gluconeogenic pathways (higher FBPase activity) from amino acids (elevated AlaAT) and/or glycerol (elevated GK). However, changes in glycemia were not observed among dietary treatments. At coronary level, the use of lower dietary protein induced an increase in the activity of glycolytic (PK and HK-IV) and lipolytic (HOAD) enzymes. Considering the overall results and the experimental conditions, it could be suggested that dietary protein could be reduced until 38% without affecting negatively the normal physiology of dentex. Moreover, high dietary carbohydrate levels could not be used efficiently by dentex given that gluconeogenesis occurs.  相似文献   

9.
The aim of this work was to elucidate if the previous results observed in hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities in European sea bass and gilthead sea bream are due to temperature per se or to differences in feed intake at different water temperatures. For that purpose triplicate groups of fish (30 g initial body weight) were kept at 18 degrees C or 25 degrees C during two weeks and fed a fixed daily ration of a glucose-free or 20% glucose diet. At the end of the experimental period, plasma glucose levels in both species were not influenced by water temperature but were higher in fish fed the glucose diet. Higher hepatic GK activity was observed in the two fish species fed the glucose diet than the glucose-free diet. In the glucose fed groups, GK activity was higher at 25 degrees C than at 18 degrees C. Glucose-6-phosphatase activities in both species were not influenced by water temperature. In European sea bass and in contrast to gilthead sea bream it was observed an effect of dietary composition on G6Pase activities with surprising higher activities recorded in fish fed the glucose diet than in fish fed the glucose-free diet. Overall, our data strongly suggest that European sea bass and gilthead sea bream are apparently capable to strongly regulate glucose uptake by the liver but not glucose synthesis, which is even enhanced by dietary glucose in European sea bass. Within limits, increasing water temperature enhances liver GK but not G6Pase activities, suggesting that both species are more able to use dietary carbohydrates at higher rearing temperatures.  相似文献   

10.
11.
Our objective is to understand the low metabolic utilization of dietary carbohydrates in fish. We compared the regulation of gluconeogenic enzymes at a molecular level in two fish species, the common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata), known to be relatively tolerant to dietary carbohydrates. After cloning of partial cDNA sequences for three key gluconeogenic enzymes (glucose-6-phosphatase (G6Pase), fructose biphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) in the two species, we analyzed gene expressions of these enzymes 6 and 24 h after feeding with (20%) or without carbohydrates. Our data show that there is at least one gluconeogenic enzyme strongly regulated (decreased expression after feeding) in the two fish species, i.e. the PEPCK for common carp and G6Pase/FBPase for gilthead seabream. In these fish species, the regulation seems to be similar to the mammals at least at the molecular level.  相似文献   

12.
Summary The adaptive response of renal metabolism of glucose was studied in isolated rat proximal and distal renal tubules after a high protein-low carbohydrate diet administration. This nutritional situation significantly stimulated the gluconeogenic activity in the renal proximal tubules (about 1.5 fold at 48 hours) due, in part, to a marked increase in the fructose 1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) activities. In this tubular fragment, FBPase activity increased only at subsaturating fructose 1,6-bisphosphate concentration (30% at 48 hours) which involved a significant decrease in the Km (31%) for its substrate without changes in the Vmax. This enzymatic behaviour is probably related to modifications in the activity of the enzyme already present in the renal cells. Proximal PEPCK activity progressively increased at all substrate concentrations (almost 2 fold at 48h of high protein diet) which brought about changes in Vmax without changes in Km. These changes are in agreement with variations in the cellular concentration of the enzyme. Neither gluconeogenesis nor the gluconeogenic enzymes changed in the distal fractions of the renal tubules. On the other hand, a high protein diet did not apparently modify the glycolytic ability in any fragment of the nephron, although a significant increase in the phosphofructokinase (PFK) and pyruvate kinase (PK) activities was found in the distal renal tubules. This short term regulation involved a significant decrease from 24 hours in the Km value of distal PFK (almost 40%) without changes in Vmax. The kinetic behaviour of distal PK was mixed. In the first 24h after high protein diet a significant decrease in the Km for phosphoenolpyruvate was found (30%) without variation in the Vmax, however during the second 24 hours the activity of this glycolytic enzyme increased significantly (almost 1.3 fold) without modifications in its Km value. On the contrary, this nutritional state did not modify the kinetic behaviour of any glycolytic enzyme in the proximal regions of the renal tubules.  相似文献   

13.
The mode of synthesis and the regulation of fructose-1,6-bisphosphatase (Fbpase), a gluconeogenic enzyme, and phosphofructokinase (PFK), a glycolytic enzyme, were investigated in Saccharomyces cerevisiae after growth in the presence of different concentrations of glucose or various gluconeogenic carbon sources. The activity of FBPase appeared in the cells after the complete disappearance of glucose from the growth medium with a concomitant increase of the pH and no significant change in the levels of accumulated ethanol. The appearance of FBPase activity following glucose depletion was dependent upon the synthesis of protein. The FBPase PFK were present in glucose-, ethanol-, glycerol-, lactate-, or pyruvate-grown cells; however, the time of appearance and the levels of both these enzymes varied. The FBPase activity was always higher in 1% glucose-grown cells than in cells grown in the presence of gluconeogenic carbon sources. Phosphoglucose isomerase activity did not vary significantly. Addition of glucose to an FBPase and PFK synthesizing culture resulted in a complete loss, followed by a reappearance, of PFK activity. In the presence of cycloheximide the disappearance of glucose and the changes in the levels of FBPase and PFK were decreased significantly. It is concluded that S. cerevisiae exhibits a more efficient synthesis of FBPase after the exhaustion of glucose compared to the activity present in cells grown in the presence of exogenous gluconeogenic carbon sources. Two metabolically antagonistic enzymes, FBPase and PFK, are present during the transition phase, but not during the exponential phase, of growth, and the decay or inactivation of these enzymes in vivo may be dependent upon a glucose-induced protease activity.  相似文献   

14.
为探究胆酸(Cholic acid, CA)作为饲料添加剂对大口黑鲈(Micropterus salmoides)生长及糖代谢的影响, 实验以饲料中添加300 mg/kg胆酸钠(Sodium cholate, CAS)作为胆酸钠组, 以不添加胆酸钠作为对照组。在饲养8周后, 分析胆酸钠对大口黑鲈生长性能、肠道菌群、糖代谢及与糖代谢相关酶的活性和基因表达的影响。结果显示: 与对照组相比, 胆酸钠组中大口黑鲈的生长指数和体成分的变化均没有显著差异; 胆酸钠组中大口黑鲈的肠道菌群组成无显著差异; 胆酸钠组中肝糖原含量和肝中糖原合成酶(Glycogen synthase, GCS)的活性显著增加, 肝中糖原分解酶糖原磷酸化酶a(Glycogen phosphorylase a, GPa)活性无显著变化, 而胆酸钠组中肌糖原含量、肌肉GCS与GPa的活性无显著差异; 胆酸钠显著促进肝中糖异生途径中果糖-1,6-二磷酸酶(Fructose-1,6-bisphosphatase, FBPase)和葡萄糖-6-磷酸酶(Glucose-6-phosphatase, G6Pase)基因的表达; 胆酸钠显著降低肝中糖酵解基因丙酮酸激酶(Pyruvate kinase, PK)和肌肉中己糖激酶(Hexokinase, HK)基因的表达; 同时, 研究还发现饲料中胆酸钠的添加可以显著降低肝中胆汁酸受体法尼醇受体(Farnesoid X receptor, FXR)基因的表达量, 而不改变肠道FXR的表达量。研究表明: 在饲料中添加300 mg/kg胆酸钠可以促进大口黑鲈肝脏糖异生, 抑制肝脏和肌肉糖酵解, 并促进鱼体肝糖原的合成。这些糖代谢的变化与肠道菌群没有直接关系, 但可能与肝中FXR的表达量降低有关。  相似文献   

15.
This study was designed to determine chronic effect of high sucrose low magnesium (HSLM) diet in weanling rats on plasma thyroid profile, catecholamines and activities of key hepatic glycolytic, and gluconeogenic enzymes. Compared to control diet fed group, significantly elevated levels of plasma triiodothyronine, tetraiodothyronine, catecholamines (epinephrine, norepinephrine, and dopamine) and activity of hepatic glycolytic (hexokinase and glucokinase), and gluconeogenic (glucose-6-phosphatase) enzymes were observed in high sucrose and low magnesium fed groups. However, HSLM diet had an additive effect on all these three parameters. The study thus, assumes significance as it shows that hormonal imbalance and disorders in carbohydrate metabolism at an early stage of development can be due to dietary modification or due to deficiency of key element magnesium.  相似文献   

16.
Glucokinase (GK) plays a central role in glucose homeostasis in mammals. The absence of an inducible GK has been suggested to explain the poor utilization of dietary carbohydrates in rainbow trout. In this context, we analyzed GK expression in three fish species (rainbow trout, gilthead seabream, and common carp) known to differ in regard to their dietary carbohydrate tolerance. Fish were fed for 10 wk with either a diet containing a high level of digestible starch (>20%) or a diet totally deprived of starch. Our data demonstrate an induction of GK gene expression and GK activity by dietary carbohydrates in all three species. These studies strongly suggest that low dietary carbohydrate utilization in rainbow trout is not due to the absence of inducible hepatic GK as previously suggested. Interestingly, we also observed a significantly lower GK expression in common carp (a glucose-tolerant fish) than in rainbow trout and gilthead seabream, which are generally considered as glucose intolerant. These data suggest that other biochemical mechanisms are implicated in the inability of rainbow trout and gilthead seabream to control blood glucose closely.  相似文献   

17.
18.
Our objective was to understand the influence of dietary gluconeogenic amino acids on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). We analyzed the effects of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid (DAA: alanine, aspartic acid or glutamic acid), on the regulation of hepatic glycolytic and gluconeogenic enzymes. We fed juvenile rainbow trout with isonitrogenous and isoenergetic diets in which part of nitrogen from fishmeal was replaced by nitrogen from one of the three DAA. Fish were fed over 9 weeks and samples withdrawn 6 h after feeding or 5 days after food deprivation. Our data did not show a clear effect of an excess of DAA on activities of glycolytic enzymes (glucokinase and pyruvate kinase) compared to the control diet. In contrast, feeding caused a significant repression of gluconeogenic enzyme activities (glucose-6-phosphatase, fructose-1,6-bisphosphatase and mitochondrial phosphoenolpyruvate carboxykinase) only in fish fed the three DAA substituted diets. However, these differences were insufficient to affect postprandial glycemia significantly. In conclusion, an excess of dietary DAA tested does not seem to modify glycemia or to have a negative impact on dietary carbohydrate utilization in rainbow trout.  相似文献   

19.
The present studies were designed to clarify the contribution of the liver to the development of hyperglycemia in Wistar fatty rats. The hepatic activities of insulin-inducible enzymes involved in glycolysis (glucokinase; GK and pyruvate kinase) and lipogenesis (glucose-6-phosphate dehydrogenase), were higher in fatty rats than in lean rats at 4 and 8 weeks of age because of the higher insulin levels in the former. Thereafter, the GK activities of fatty rats decreased slightly in spite of severe hyperinsulinemia, and did not differ from those of lean rats. In addition, fatty rats had higher levels of insulin-suppressible gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and fructose-1, 6-diphosphatase. These findings indicate that the hepatic enzymes of fatty rats are resistant to insulin. This postulation was supported by the fact that the hepatic enzyme activities of fatty rats showed a lower response to changes in plasma insulin levels produced by fasting and refeeding. The G6Pase/GK ratio, which indicates net glucose handling in the liver, increased in fatty rats and decreased in lean rats with advancing age, suggesting that hepatic glucose production in fatty rats becomes dominant with advancing age. The changes in hepatic glycolytic intermediates supported this suggestion; the glycolytic steps both from glucose to glucose-6-phosphate and from phospho-enolpyruvate to pyruvate in fatty rats were accelerated at 5 weeks of age, but suppressed at 12 weeks of age. These results indicate that insulin resistance in the hepatic enzyme regulation may contribute to the development of hyperglycemia in Wistar fatty rats.  相似文献   

20.
A 60 days experiment was conducted to study the effect of dietary gelatinized (G) and non-gelatinized (NG) starch on immunomodulation of Labeo rohita juveniles. Two hundred and thirty four juveniles (av. wt. 2.53+/-0.04) were randomly distributed in six treatment groups with each of three replicates. Six semi-purified diets containing NG and G corn starch, each at six levels of inclusion (0, 20, 40, 60, 80, 100) were prepared viz., T(1) (100% NG, 0% G starch), T(2) (80% NG, 20% G starch), T(3) (60% NG, 40% G starch), T(4) (40% NG, 60% G starch), T(5) (20% NG, 80% G starch) and T(6) (0% NG, 100% G starch). After a feeding period of 60 days, the juveniles were challenged with Aeromonas hydrophila to study their immunomodulation due to feeding of G and NG starch. RBC and haemoglobin content were significantly (P<0.05) reduced due to bacterial challenge, but dietary starch (G/NG starch) had no effect on it. G:NG starch ratio in the feed had significant effect on total leukocyte count during pre- and post-challenge periods. The leukocyte count concomitantly increased with the increased level of G starch in the diet. Highest albumin/globulin (A/G) ratio was recorded in T6 group (100% G starch) and lowest in T1 group (100% NG starch) group followed by T2 group both in pre- and post-challenge periods. NBT, lysozyme activity, total protein and globulin content were highest in T2 group (80% NG, 20% G starch) both in pre- and post-challenge periods. After challenge with A. hydrophila, the highest survival was recorded in T2 group, whereas lowest survival was recorded in T6 group. Conclusively high level of G starch was found to be immunosuppressive in Labeo rohita juveniles and NG:G starch ratio of 80:20 seems to be optimum for promoting growth and protecting immunity in L. rohita juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号