首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tRNA (m5U54)methyltransferase (RUMT) catalyzes the methylation of uridine 54 of transfer RNA by S-adenosyl-l-methionine. In this report, we present the enzymatic mechanism of RUMT, including the stereochemical course of the methylation reaction, and discuss RUMT-tRNA recognition. As part of its enzymatic mechanism, we postulate that RUMT catalyzes the disruption of RNA-RNA contacts. We also show that many nucleotide substitutions can be made in the T-loop of tRNA without affecting RUMT binding, indicating that the recognition of the T-loop by RUMT is not stringent.  相似文献   

2.
Unlike most riboswitches, which have one cognate effector, the bacterial yjdF riboswitch binds to diverse azaaromatic compounds, only a subset of which cause it to activate translation. We examined the yjdF aptamer domain by small-angle X-ray scattering and found that in the presence of activating ligands, the RNA adopts an overall shape similar to that of tRNA. Sequence analyses suggested that the yjdF aptamer is a homolog of tRNALys, and that two of the conserved loops of the riboswitch are equivalent to the D-loop and T-loop of tRNA, associating to form an elbow-like tertiary interaction. Chemical probing indicated that this association is promoted by activating ligands such as chelerythrine and harmine. In its native mRNA context, activator ligands stabilize the tRNA-like fold of the yjdF aptamer, outcompeting the attenuated state in which its T-loop base pairs to the Shine–Dalgarno element of the mRNA. Moreover, we demonstrate that the liganded aptamer itself activates translation, as authentic tRNAs, when grafted into mRNA, can potently activate translation. Taken together, our data demonstrate the ability of tRNA to function as a small-molecule responsive cis regulatory element.  相似文献   

3.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

4.
Summary Structural resemblance of the human Alu family with a subset of vertebrate tRNAs was detected. Of four tRNAs, tRNALys, tRNAIle, tRNAThr, and tRNATyr, which comprise a structurally related family, tRNALys is the most similar to the human Alu family. Of the 76 nucleotides in lysine tRNA (including the CCA tail), 47 are similar to the human Alu family (60% identity). The secondary structure of the human Alu family corresponding to the D-stem and anticodon stem regions of the tRNA appears to be very stable. The 7SL RNA, which is a progenitor of the human Alu family, is less similar to lysine tRNA (55% identity), and the secondary structure of the 7SL RNA folded like a tRNA is less stable than that of the human Alu family folded likewise. Insertion of the tetranucleotide GAGA, which is an important region of the second promoter for RNA polymerase III in the Alu sequence, occurred during the deletion and ligation process to generate the Alu sequence from the parental 7SL RNA. These results suggest that the human Alu family was generated from the 7SL RNA by deletion, insertion, and mutations, which thus modified the ancestral 7SL sequence so that it could form a structure more closely resembling lysine tRNA. The similarities of several short interspersed sequences to the lysine tRNA were also examined. TheGalago type 2 family, which was reported to be derived from a methionine initiator tRNA, was also found to be similar to the lysine tRNA. Thus lysine tRNA-like structures are widespread in genomes in the animal kingdom. The implications of these findings in relation to the mechanism of generation of the human Alu family and its possible functions are discussed.  相似文献   

5.
During their maturation step, transfer RNAs (tRNAs) undergo excision of their introns by specific splicing. Although tRNA splicing is a molecular event observed in all domains of life, the machinery of the ligation reaction has diverged during evolution. Yeast tRNA ligase 1 (TRL1) is a multifunctional protein that alone catalyzes RNA ligation in tRNA splicing, whereas three molecules [RNA ligase (RNL), Clp1, and PNK/CPDase] are necessary for RNA ligation in tRNA splicing in amphioxi. RNA ligation not only occurs in tRNA splicing, but also in yeast HAC1 mRNA splicing and in animal X-box binding protein 1 (XBP1) mRNA splicing under conditions of endoplasmic reticulum (ER) stress. Yeast TRL1 is known to function as an RNA ligase for HAC1 mRNA splicing, whereas the RNA ligase for XBP1 mRNA splicing is unknown in animals. We examined whether yeast and amphioxus RNA ligases for tRNA splicing function in RNA ligation in mammalian XBP1 splicing. Both RNA ligases functioned in RNA ligation in mammalian XBP1 splicing in vitro. Interestingly, Clp1, and PNK/CPDase were not necessary for exon–exon ligation in XBP1 mRNA by amphioxus RNL. These results suggest that RNA ligase for tRNA splicing might therefore commonly function as an RNA ligase for XBP1 mRNA splicing.  相似文献   

6.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

7.
The architecture and folding of complex RNAs is governed by a limited set of highly recurrent structural motifs that form long-range tertiary interactions. One of these motifs is the T-loop, which was first identified in tRNA but is broadly distributed across biological RNAs. While the T-loop has been examined in detail in different biological contexts, the various receptors that it interacts with are not as well defined. In this study, we use a cell-based genetic screen in concert with bioinformatic analysis to examine three different, but related, T-loop receptor motifs found in the flavin mononucleotide (FMN) and cobalamin (Cbl) riboswitches. As a host for different T-loop receptors, we employed the env8 class-II Cbl riboswitch, an RNA that uses two T-loop motifs for both folding and supporting the ligand binding pocket. A set of libraries was created in which select nucleotides that participate in the T-loop/T-loop receptor (TL/TLR) interaction were fully randomized. Library members were screened for their ability to support Cbl-dependent expression of a reporter gene. While T-loops appear to be variable in sequence, we find that the functional sequence space is more restricted in the Cbl riboswitch, suggesting that TL/TLR interactions are context dependent. Our data reveal clear sequence signatures for the different types of receptor motifs that align with phylogenic analysis of these motifs in the FMN and Cbl riboswitches. Finally, our data suggest the functional contribution of various nucleobase-mediated long-range interactions within the riboswitch subclass of TL/TLR interactions that are distinct from those found in other RNAs.  相似文献   

8.
9.
Modified purines are found in all organisms in the tRNA, rRNA, and even DNA, raising the possibility of an early role for these compounds in the evolution of life. These include N 6-methyladenine, 1-methyladenine, N 6,N 6-dimethyladenine, 1-methylhypoxanthine, 1-methylguanine, and N 2-methylguanine. We find that these bases as well as a number of nonbiological modified purines can be synthesized from adenine and guanine by the simple reaction of an amine or an amino group with adenine and guanine under the concentrated conditions of the drying-lagoon or drying-beach model of prebiotic synthesis with yields as high as 50%. These compounds are therefore as prebiotic as adenine and guanine and could have played an important role in the RNA world by providing additional functional groups in ribozymes, especially for the construction of hydrophobic binding pockets. Received: 7 August 1998 / Accepted: 31 December 1998  相似文献   

10.
Bacterial RNase P consists of one protein and one RNA [RNase P RNA (RPR)]. RPR can process tRNA precursors correctly in the absence of the protein. Here we have used model hairpin loop substrates corresponding to the acceptor, T-stem, and T-loop of a precursor tRNA to study the importance of the T-loop structure in RPR-alone reaction. T-stem/loop (TSL) interacts with a region in RPR [TSL binding site (TBS)], forming TSL/TBS interaction. Altering the T-loop structure affects both cleavage site selection and rate of cleavage at the correct site + 1 and at the alternative site − 1. The magnitude of variation depended on the structures of the T-loop and the TBS region, with as much as a 150-fold reduction in the rate of cleavage at + 1. Interestingly, for one T-loop structure mutant, no difference in the rate at − 1 was detected compared to cleavage of the substrate with an unchanged T-loop, indicating that, in this case, the altered T-loop structure primarily influences events required for efficient cleavage at the correct site + 1. We also provide data supporting a functional link between a productive TSL/TBS interaction and events at the cleavage site. Collectively, our findings emphasize the interplay between separate regions upon formation of a productive RPR substrate that leads to efficient and accurate cleavage. These new data provide support for an induced-fit mechanism in bacterial RPR-mediated cleavage at the correct site + 1.  相似文献   

11.
Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

12.
13.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

14.
《Epigenetics》2013,8(10):1094-1097
  相似文献   

15.
RNase P recognizes many different precursor tRNAs as well as other substrates and cleaves all of them accurately at the expected position. RNase P recognizes the tRNA structure of the precursor tRNA by a set of interactions between the catalytic RNA subunit and the T- and acceptor-stems mainly, although residues in the 5-leader sequence as well as the 3-terminal CCA are important. These conclusions have been reached by several studies on mutant precursor tRNAs as well as cross-linking studies between RNase P RNA and precursor tRNAs. The protein subunit of RNase P seems also to affect the way that the substrate is recognized as well as the range of substrates that can be used by RNase P, although the protein does not seem to interact directly with the substrates. The interaction between the protein and RNA subunits of RNase P has been extensively studiedin vitro. The protein subunit sequence is not highly conserved among bacteria, however different proteins are functionally equivalent as heterologous reconstitution of the RNase P holoenzyme can be achieved in many cases.Abbreviations C5 protein protein subunit fromE. coli RNase P - EGS external guide sequence - M1 RNA RNA subunit formE. coli RNase P - ptRNA precursor tRNA - RNase P ribonuclease P  相似文献   

16.
The expression of genes that code for the large ribosomal RNAs (rRNAs) and tRNAs can be regulated by calcium, serum, insulin and a tumor-promoting phorbol ester, TPA. These effectors can rapidly alter rRNA and tRNA synthesis in dividing and nondividing Drosophila cells. In an in vitro assay system of the nondividing cells of the male accessory glands, calcium, insulin and TPA were shown to increase both rRNA and tRNA synthesis. Exposure of actively dividing Drosophila culture cells to differing serum concentrations or TPA also altered rRNA and tRNA synthesis. Nuclear run-on assays demonstrate that the exposure of these cells to increased serum concentrations coordinately alters RNA polymerase I loading on both 18S and 28S rDNA. These data indicate that calcium, growth factors and a tumor-promoter each can signal changes in ribosomal and tRNA gene expression.  相似文献   

17.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem.The tRNAGly/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNAGly acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNAGly aminoacyl stem from Thermus thermophilus at 1.6 Å resolution and provide insight into the RNA geometry and hydration.  相似文献   

18.
In this paper we are going to present a model for the coevolution of major components of the protein synthesis machinery in a primordial RNA world. We propose that the essential prerequisites for RNA-based protein synthesis, i.e., tRNA-like molecules, ribozymic charging catalysts, small-subunit(SSU) rRNA, and large-subunit(LSU) rRNA, evolved from the same ancestral RNA molecule. Several arguments are considered which suggest that tRNA-like molecules were derived by tandem joining of template-flanking hairpin structures involved in replication control. It is further argued that the ancestors of contemporary group I tRNA introns catalyzed such hairpin joining reactions, themselves also giving rise to the ribosomal RNAs. Our model includes a general stereochemical principle for the interaction between ribozymes and hairpin-derived recognition structures, which can be applied to such seemingly different processes as RNA polymerization, aminoacylation, tRNA decoding, and peptidyl transfer, implicating a common origin for these fundamental functions. These and other considerations suggest that generation and evolution of tRNA were coupled to the evolution of synthetases, ribosomal RNAs, and introns from the beginning and have been a consequence arising from the original function of tRNA precursor hairpins as replication and recombination control elements. Correspondence to: T.P. Dick  相似文献   

19.
20.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号