首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AntiJen is a database system focused on the integration of kinetic, thermodynamic, functional, and cellular data within the context of immunology and vaccinology. Compared to its progenitor JenPep, the interface has been completely rewritten and redesigned and now offers a wider variety of search methods, including a nucleotide and a peptide BLAST search. In terms of data archived, AntiJen has a richer and more complete breadth, depth, and scope, and this has seen the database increase to over 31,000 entries. AntiJen provides the most complete and up-to-date dataset of its kind. While AntiJen v2.0 retains a focus on both T cell and B cell epitopes, its greatest novelty is the archiving of continuous quantitative data on a variety of immunological molecular interactions. This includes thermodynamic and kinetic measures of peptide binding to TAP and the Major Histocompatibility Complex (MHC), peptide-MHC complexes binding to T cell receptors, antibodies binding to protein antigens and general immunological protein-protein interactions. The database also contains quantitative specificity data from position-specific peptide libraries and biophysical data, in the form of diffusion co-efficients and cell surface copy numbers, on MHCs and other immunological molecules. The uses of AntiJen include the design of vaccines and diagnostics, such as tetramers, and other laboratory reagents, as well as helping parameterize the bioinformatic or mathematical in silico modeling of the immune system. The database is accessible from the URL: http://www.jenner.ac.uk/antijen.  相似文献   

2.
FIMM database (http://sdmc.krdl.org.sg:8080/fimm ) contains data relevant to functional molecular immunology, focusing on cellular immunology. It contains fully referenced data on protein antigens, major histocompatibility complex (MHC) molecules, MHC-associated peptides and relevant disease associations. FIMM has a set of search tools for extraction of information and results are presented as lists or as reports.  相似文献   

3.
FIMM, a database of functional molecular immunology: update 2002   总被引:3,自引:0,他引:3       下载免费PDF全文
FIMM database (http://sdmc.krdl.org.sg:8080/fimm) contains data relevant to functional molecular immunology, focusing on cellular immunology. It contains fully referenced data on protein antigens, major histocompatibility complex (MHC) molecules, MHC-associated peptides and relevant disease associations. FIMM has a set of search tools for extraction of information and results are presented as lists or as reports.  相似文献   

4.
5.
6.
7.
8.
BIOS is a computerised database system for holding species distributiondata. Emphasis has been placed on the flexibility in which storedinformation can be accessed. Multiple retrieval pathways permitsimple enquiries to be answered or complicated interrogationsequences for statistical treatment of data. The structuralorganisation of the database is explained and details of itscontents are listed. Examples of applications in the fieldsof zoogeography and ecology are given together with illustrations.  相似文献   

9.
A database application has been developed for phenotype data management employing the Entity-Attribute-Value (EAV) model. By applying the EAV model, this application allows users to manage arbitrary phenotypes and customize data entry forms; therefore, it is suitable for different and multi-center projects.  相似文献   

10.
11.
SYFPEITHI: database for MHC ligands and peptide motifs   总被引:97,自引:14,他引:83  
 The first version of the major histocompatibility complex (MHC) databank SYFPEITHI: database for MHC ligands and peptide motifs, is now available to the general public. It contains a collection of MHC class I and class II ligands and peptide motifs of humans and other species, such as apes, cattle, chicken, and mouse, for example, and is continuously updated. All motifs currently available are accessible as individual entries. Searches for MHC alleles, MHC motifs, natural ligands, T-cell epitopes, source proteins/organisms and references are possible. Hyperlinks to the EMBL and PubMed databases are included. In addition, ligand predictions are available for a number of MHC allelic products. The database content is restricted to published data only.  相似文献   

12.
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker‐driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end‐users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post‐acquisition analysis of proteomic data.  相似文献   

13.
14.
Proteomics, or the direct analysis of the expressed protein components of a cell, is critical to our understanding of cellular biological processes in normal and diseased tissue. A key requirement for its success is the ability to identify proteins in complex mixtures. Recent technological advances in tandem mass spectrometry has made it the method of choice for high-throughput identification of proteins. Unfortunately, the software for unambiguously identifying peptide sequences has not kept pace with the recent hardware improvements in mass spectrometry instruments. Critical for reliable high-throughput protein identification, scoring functions evaluate the quality of a match between experimental spectra and a database peptide. Current scoring function technology relies heavily on ad-hoc parameterization and manual curation by experienced mass spectrometrists. In this work, we propose a two-stage stochastic model for the observed MS/MS spectrum, given a peptide. Our model explicitly incorporates fragment ion probabilities, noisy spectra, and instrument measurement error. We describe how to compute this probability based score efficiently, using a dynamic programming technique. A prototype implementation demonstrates the effectiveness of the model.  相似文献   

15.
16.
MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.  相似文献   

17.
Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new "omics"-based approaches towards the analysis of complex biological processes. However, the amount and complexity of data that even a single experiment can produce seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can be used as prediction method and applied to unknown proteins/peptides. We have successfully applied this method to several different data sets including peptide microarray-derived sets containing more than 100,000 data points. NNAlign is available online at http://www.cbs.dtu.dk/services/NNAlign.  相似文献   

18.

Background  

Peptides are important molecules with diverse biological functions and biomedical uses. To date, there does not exist a single, searchable archive for peptide sequences or associated biological data. Rather, peptide sequences still have to be mined from abstracts and full-length articles, and/or obtained from the fragmented public sources.  相似文献   

19.
Predictome: a database of putative functional links between proteins   总被引:11,自引:2,他引:9       下载免费PDF全文
The current deluge of genomic sequences has spawned the creation of tools capable of making sense of the data. Computational and high-throughput experimental methods for generating links between proteins have recently been emerging. These methods effectively act as hypothesis machines, allowing researchers to screen large sets of data to detect interesting patterns that can then be studied in greater detail. Although the potential use of these putative links in predicting gene function has been demonstrated, a central repository for all such links for many genomes would maximize their usefulness. Here we present Predictome, a database of predicted links between the proteins of 44 genomes based on the implementation of three computational methods—chromosomal proximity, phylogenetic profiling and domain fusion—and large-scale experimental screenings of protein–protein interaction data. The combination of data from various predictive methods in one database allows for their comparison with each other, as well as visualization of their correlation with known pathway information. As a repository for such data, Predictome is an ongoing resource for the community, providing functional relationships among proteins as new genomic data emerges. Predictome is available at http://predictome.bu.edu.  相似文献   

20.
Functional links between proteins can often be inferred from genomic associations between the genes that encode them: groups of genes that are required for the same function tend to show similar species coverage, are often located in close proximity on the genome (in prokaryotes), and tend to be involved in gene-fusion events. The database STRING is a precomputed global resource for the exploration and analysis of these associations. Since the three types of evidence differ conceptually, and the number of predicted interactions is very large, it is essential to be able to assess and compare the significance of individual predictions. Thus, STRING contains a unique scoring-framework based on benchmarks of the different types of associations against a common reference set, integrated in a single confidence score per prediction. The graphical representation of the network of inferred, weighted protein interactions provides a high-level view of functional linkage, facilitating the analysis of modularity in biological processes. STRING is updated continuously, and currently contains 261 033 orthologs in 89 fully sequenced genomes. The database predicts functional interactions at an expected level of accuracy of at least 80% for more than half of the genes; it is online at http://www.bork.embl-heidelberg.de/STRING/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号