首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vancomycin resistance in Enterococcus faecium BM4147 is mediated by vancomycin resistance proteins VanA and VanH. VanA is a D-alanine:D-alanine ligase of altered substrate specificity [Bugg, T. D. H., Dutka-Malen, S., Arthur, M., Courvalin, P., & Walsh, C. T. (1991) Biochemistry 30, 2017-2021], while the sequence of VanH is related to those of alpha-keto acid dehydrogenases [Arthur, M., Molinas, C., Dutka-Malen, S., & Courvalin, P. (1991) Gene (submitted)]. We report purification of VanH to homogeneity, characterization as a D-specific alpha-keto acid dehydrogenase, and comparison with D-lactate dehydrogenases from Leuconostoc mesenteroides and Lactobacillus leichmanii. VanA was found to catalyze ester bond formation between D-alanine and the D-hydroxy acid products of VanH, the best substrate being D-2-hydroxybutyrate (Km = 0.60 mM). The VanA product D-alanyl-D-2-hydroxybutyrate could then be incorporated into the UDPMurNAc-pentapeptide peptidoglycan precursor by D-Ala-D-Ala adding enzyme from Escherichia coli or by crude extract from E. faecium BM4147. The vancomycin binding constant of a synthetic modified peptidoglycan analogue N-acetyl-D-alanyl-D-2-hydroxybutyrate (Kd greater than 73 mM) was greater than 1000-fold higher than the binding constant for N-acetyl-D-alanyl-D-alanine (Kd = 54 microM), partly due to the disruption of a hydrogen bond in the vancomycin-target complex, thus providing a molecular rationale for high-level vancomycin resistance.  相似文献   

3.
VanD-type resistance to glycopeptides in Enterococcus faecium BM4339 is due to constitutive synthesis of D-alanyl-D-lactate-terminating peptidoglycan precursors (B. Périchon, P. Reynolds, and P. Courvalin, Antimicrob. Agents Chemother. 41:2016-2018, 1997). The sequence of a 5,780-bp fragment was determined and revealed six open reading frames. The 3' distal part encoded the VanHD dehydrogenase, the VanD ligase, and the VanXD DD-dipeptidase, which were highly similar to the corresponding proteins in VanA and VanB types of resistance. The deduced VanYD protein was homologous to penicillin-binding proteins that display DD-carboxypeptidase activity. The 5' end coded for the putative VanRD-VanSD two-component regulatory system. Due to a frameshift mutation in the chromosomal ddl gene, BM4339 produced an impaired D-alanine:D-alanine ligase. However, since expression of the resistance genes is constitutive, growth of E. faecium BM4339 was not dependent on the presence of glycopeptides in the culture medium.  相似文献   

4.
In the presence of bacitracin, vancomycin-resistant Enterococcus faecium (vanA phenotype) accumulate UDP-N-acetylmuramyl(UDP-Mur-NAc)-tetrapeptide and a UDP-MurNAc-depsipentapeptide containing lactate substituted for the carboxy-terminal-D-alanine residue. In an in vitro peptidoglycan polymerization assay, the modified precursors function and confer resistance to vancomycin.  相似文献   

5.
M Arthur  C Molinas  P Courvalin 《Gene》1992,120(1):111-114
Cloning and nucleotide sequencing identified the vanY gene as a member of the vancomycin-resistance van gene cluster of enterococcal plasmid, pIP816. The vanY gene was necessary for synthesis of the vancomycin-inducible D,D-carboxypeptidase activity previously proposed to be responsible for glycopeptide resistance. However, this activity was not required for peptidoglycan synthesis in the presence of glycopeptides. The deduced product of vanY did not display significant similarity with other D,D-carboxypeptidases.  相似文献   

6.
7.
A total of 12 VanA-type vancomycin-resistant enterococci, consisting of 10 Enterococcus faecium isolates and two Enterococcus avium isolates, were examined in detail. The vancomycin resistance conjugative plasmids pHTalpha (65.9 kbp), pHTbeta (63.7 kbp), and pHTgamma (66.5 kbp) were isolated from each of three different E. faecium strains. The plasmids transferred highly efficiently between enterococcus strains during broth mating and were homologous with pMG1 (Gm(r); 65.1 kb).  相似文献   

8.
Glycopeptides and beta-lactams are the major antibiotics available for the treatment of infections due to Gram-positive bacteria. Emergence of cross-resistance to these drugs by a single mechanism has been considered as unlikely because they inhibit peptidoglycan polymerization by different mechanisms. The glycopeptides bind to the peptidyl-D-Ala(4)-D-Ala(5) extremity of peptidoglycan precursors and block by steric hindrance the essential glycosyltransferase and D,D-transpeptidase activities of the penicillin-binding proteins (PBPs). The beta-lactams are structural analogues of D-Ala(4)-D-Ala(5) and act as suicide substrates of the D,D-transpeptidase module of the PBPs. Here we have shown that bypass of the PBPs by the recently described beta-lactam-insensitive L,D-transpeptidase from Enterococcus faecium (Ldt(fm)) can lead to high level resistance to glycopeptides and beta-lactams. Cross-resistance was selected by glycopeptides alone or serially by beta-lactams and glycopeptides. In the corresponding mutants, UDP-MurNAc-pentapeptide was extensively converted to UDP-MurNAc-tetrapeptide following hydrolysis of D-Ala(5), thereby providing the substrate of Ldt(fm). Complete elimination of D-Ala(5), a residue essential for glycopeptide binding, was possible because Ldt(fm) uses the energy of the L-Lys(3)-D-Ala(4) peptide bond for cross-link formation in contrast to PBPs, which use the energy of the D-Ala(4)-D-Ala(5) bond. This novel mechanism of glycopeptide resistance was unrelated to the previously identified replacement of D-Ala(5) by D-Ser or D-lactate.  相似文献   

9.
Tn3702, a conjugative transposon in Enterococcus faecalis   总被引:4,自引:0,他引:4  
Enterococcus faecalis strain D434 was found to carry on its chromosome a determinant encoding tetracycline-minocycline resistance (Tcr-Mnr) and to harbor both an R plasmid and a cryptic conjugative plasmid, pIP1141. The determinant coding for Tcr-Mnr was located on a conjugative transposon, designated Tn3702. The transposition of Tn3702 on to both pIP1141 and the hemolysin plasmid pIP964 yielded different derivatives each of which contained an 18.5-kilobase insert. The structure of Tn3702 is similar to that of the conjugative transposon Tn916.  相似文献   

10.
Enterococcus faecium DPC3675 is a derivative of E. faecium DPC1146 which contains a single copy of the conjugative transposon Tn916. Although the transposon is observed to be oriented in one direction in individual colonies, DNA extracted from cultures grown from these colonies contains the transposon in both orientations, as determined by PCR analysis and sequencing of the transposon/chromosome junctions. Therefore, Tn916 possesses a hitherto unreported ability to invert within a particular insertion site during growth in broth.  相似文献   

11.
Cloning and nucleotide sequencing indicated that transposon Tn 1546 from Enterococcus faecium BM4147 encodes a 23365 Da protein, VanX, required for glycopeptide resistance. The vanX gene was located downstream from genes encoding the VanA ligase and the VanH dehydrogenase which synthesize the depsipeptide D-alanyl-D-lactate (D-Ala-D-Lac). In the presence of ramoplanin, an Enterococcus faecalis JH2-2 derivative producing VanH, VanA and VanX accumulated mainly UDP-MurNAc-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Lac (pentadepsipeptide) and small amounts of UDP-MurNAc-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala (pentapeptide) in the ratio 49:1. Insertional inactivation of vanX led to increased synthesis of pentapeptide with a resulting change in the ratio of pentadepsipeptide: pentapeptide to less than 1:1. Expression of vanX in E. faecalis and Escherichia coli resulted in production of a D,D-dipeptidase that hydrolysed D-Ala-D-Ala. Pentadepsipeptide, pentapeptide and D-Ala-D-Lac were not substrates for the enzyme. These results establish that VanX is required for production of a D,D-dipeptidase that hydrolyses D-Ala-D-Ala, thereby preventing pentapeptide synthesis and subsequent binding of glycopeptides to D-Ala-D-Ala-containing peptidoglycan precursors at the cell surface.  相似文献   

12.
Tn292l, a transposon encoding fosfomycin resistance.   总被引:6,自引:1,他引:6       下载免费PDF全文
The determinant of resistance to fosfomycin of the Serratia marcescens plasmid pOU900 was transposed into the plasmid ColE1 and into the plasmid RP4 in the absence of the RecA function of the host. In each case, the acquisition of fosfomycin resistance was correlated with the presence of a discrete piece of DNA, uniform in size and in restriction pattern, This new, 7.5-megadalton transposable element encoding resistance to fosfomycin has been called Tn2921. A preliminary map of the transposon is presented.  相似文献   

13.
We have identified two 19-kb conjugative transposons (Tn5381 and Tn5383) in separate strains of multiply resistant Enterococcus faecalis. These transposons confer resistance to tetracycline and minocycline via a tetM gene, are capable of both chromosomal and plasmid integration in a Rec- environment, and transfer between strains in the absence of detectable plasmid DNA at frequencies ranging from < 1 x 10(-9) to 2 x 10(-5) per donor CFU, depending on the donor strain and the growth conditions. Hybridization studies indicate that these transposons are closely related to Tn916. We have identified bands of ca. 19 kb on agarose gel separations of alkaline lysis preparations from E. faecalis strains containing chromosomal copies of Tn5381, which we have confirmed to be a circularized form of this transposon. This phenomenon has previously been observed only when Tn916 has been cloned in Escherichia coli. Overnight growth of donor strains in the presence of subinhibitory concentrations of tetracycline results in an approximately 10-fold increase in transfer frequency of Tn5381 into enterococcal recipients and an increase in the amount of the circular form of Tn5381 as detectable by hybridization. These results suggest that Tn5381 is a Tn916-related conjugative transposon for which the appearance of a circular form and the conjugative-transfer frequency are regulated by a mechanism(s) affected by the presence of tetracycline in the growth medium.  相似文献   

14.
Characterization of Tn5386, a Tn916-related mobile element   总被引:1,自引:0,他引:1  
In recent work, we described excision of a large genomic region from Enterococcus faecium D344R resulting from the interaction of Tn916 and a related transposon designated Tn5386. In the present study, we present and analyze the complete sequence of Tn5386. Tn5386 is 29,451 bp in length. Fifteen of its 30 open reading frames are analogous to ORFs found in Tn916. Significant differences include a series of ORFs with homology to lantibiotic immunity genes in the same location where tetM is found in Tn916, insertion of a Group II intron and an ORF with similarities to previously described surface exposed collagen adhesion proteins. Our results indicate that Tn5386 falls within the Tn916 family of transposons, and in place of tetM encodes a novel region that may confer resistance to lantibiotics.  相似文献   

15.
The molecular structure and transferability of Tn1546 in 143 vancomycin-resistant Enterococcus faecium (VREF) isolates obtained from patients (n = 49), surface water (n = 28), and urban and hospital sewage (n = 66) in Tehran, Iran, were investigated. Molecular characterization of Tn1546 elements in vanA VREF was performed using a combination of restriction fragment length polymorphism analysis and DNA sequencing of the internal PCR fragments of vanA transposons. Long-PCR amplification showed that the molecular size of Tn1546 elements varied from 10.8 to 12.8 kb. The molecular analysis of Tn1546 showed that 45 isolates (31.5%) harbored a deletion/mutation upstream from nucleotide 170. No horizontal transfer of Tn1546 was observed following filter-mating conjugation with these isolates. Nevertheless, the rates of transferability for other isolates were 10−5 to 10−6 per donor. Insertion sequences IS1216V and IS1542 were present in 103 (72%) and 138 (96.5%) of the isolates, respectively. The molecular analysis of Tn1546 elements resulted in three genomic organizations. The genomic organization lineage 1 was dominated by the isolates from clinical samples (3.4%), lineage 2 was dominated mostly by sewage isolates (24.5%), and lineage 3 contained isolates obtained from all sources (72.1%). The genetic diversity determined using pulsed-field gel electrophoresis (PFGE) revealed a single E. faecium clone, designated 44, which was common to the samples obtained from clinical specimens and hospital and municipal sewage. Furthermore, the results suggest that lineage 3 Tn1546 was highly disseminated among our enterococcal isolates in different PFGE patterns.  相似文献   

16.
We isolated a new transposon, Tn2001, from the group P-2 plasmid Rms159-1 in Pseudomonas aeruginosa. Tn2001-encoded chloramphenicol resistance did not result from the formation of chloramphenicol acetyltransferase. Tn2001 was transposable between temperate phages and conjugative and nonconjugative plasmids belonging to various incompatibility groups, including P-1, P-3, P-4, P-5, P-7, and P-8 in P. aeruginosa. Transposition occurred independently of the general recombination ability of the Pseudomonas host, and its frequency varied between 10(-1) and 10(-8), depending upon the donor and recipient replicons. Tn2001 transposition also occurred in a recombination-deficient strain of Escherichia coli. Agarose gel electrophoresis and electron microscopic observations revealed that Tn2001 could transpose to different sites in the RP4 replicon and that the transposed deoxyribonucleic acid fragment was 2.1 kilobases long.  相似文献   

17.
18.
A 58.7-kb nonconjugative plasmid (pKQ1) previously reported in a clinical isolate of Enterococcus faecium was found to contain both a tetM and an erythromycin resistance (erm) determinant. The plasmid contained a region homologous to the A, F, H, and G HincII fragments of Tn916. However, the 4.8-kb B fragment of Tn916 which contained the tetM determinant was replaced by a 7.3-kb fragment, and the 3.6-kb HincII C fragment of Tn916 was missing. An element homologous to Tn917 was juxtaposed to the truncated Tn916-like element. The Tn917-like element was similar in size to the erm transposon Tn917 as determined by a ClaI restriction digest which spanned approximately 99% of the transposon. When Bacillus subtilis or Streptococcus sanguis were transformed with pKQ1, no zygotically induced transposition of the tetM element was detected. Similarly no transposition of the Tn917-like element was detected.  相似文献   

19.
20.
R938 carries a transposon (TAbeta) of approximate molecular weight 9.5 Megadaltons (Mdal, 10(6) daltons). This contains genes for a beta lactamase of type TEM-1 and for streptomycin phosphatransferase (SPT). There is a ten-fold difference in the efficiency of transposition in different strains of E. coli K12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号