首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Paucha  A E Smith 《Cell》1978,15(3):1011-1020
To demonstrate directly that the carboxy terminal portion of simian virus 40 (SV40) small t is encoded by a sequence of nucleotides from the region between 0.59-0.54 map units on SV40 DNA, we characterized the putative shortened forms or fragments of small t produced by mutants of SV40 (dl 884, dl 885, dl 890) with deletions in this region of the genome. Attempts to isolate the putative fragments of small t from mutant-infected cells, or from cell-free systems primed with mRNA from mutant-infected cells, resulted in only low yields of the fragments. Experiments using purified SV40 mRNA in low background cell-free systems, in which large T and small t could be detected without immunoprecipitation, suggested that these low yields were accounted for by reduced amounts of mRNA coding for the shortened forms of small t present in the mutant-infected cells. Larger amounts of putative fragments of small t were produced by translation of deletion mutant cRNA (complementary RNA synthesized in vitro using purified deletion mutant DNA and E. coli RNA polymerase). Fingerprint analysis of the proteins produced showed that they contain most, if not all, of the methionine peptides common to small t and large T. Furthermore, the fragments of small t produced in response to dl 884 and dl 890 lack two methionine peptides that are present in small t but not in large T. These data provide direct evidence that the region between 0.59-0.54 map units on SV40 DNA codes for polypeptide sequences that are unique to small t, and establishes that the nucleotide sequences from the region between 0.59-0.54 map units are both a coding sequence (for small t) and an intervening sequence (for large T).  相似文献   

2.
A recombinant murine retrovirus containing the intact cDNA sequence for the simian virus 40 (SV40) large T antigen (T) was constructed by using the pZIPNeo SV(X)1 vector. Psi 2 packaging cells were then transfected, and G418-resistant clones were used to generate helper-free viral stocks. NIH 3T3 mouse fibroblasts infected by the recombinant T cDNA retrovirus were selected fro G418 resistance. Such cultures synthesized authentic SV40 T and were transformed to anchorage-independent growth at high efficiency. Therefore, this vector has allowed the study of the transformation properties of T under conditions of neutral drug selection and in the absence of SV40 small t antigen.  相似文献   

3.
Treatment of African green monkey kidney CV-1 cells with human alpha interferons before infection with simian virus 40 (SV40) inhibited the accumulation of SV40 mRNAs and SV40 T-antigen (Tag). This inhibition persisted as long as the interferons were present in the medium. SV40-transformed human SV80 cells and mouse SV3T3-38 cells express Tag, and interferon treatment of these cells did not affect this expression. SV80 and SV3T3-38 cells which had been exposed to interferons were infected with a viable SV40 deletion mutant (SV40 dl1263) that codes for a truncated Tag. Exposure to interferons inhibited the accumulation of the truncated Tag (specified by the infecting virus) but had no significant effect on the accumulation of the endogenous Tag (specified by the SV40 DNA integrated into the cellular genome). The level of Tag in SV40-transformed mouse SV101 cells was not significantly decreased by interferon treatment. SV40 was rescued from SV101 cells and used to infect interferon-treated and control African green monkey kidney Vero cells. Tag accumulation was inhibited in the cells which had been treated with interferons before infection. Our data demonstrate that even within the same cell the interferon system can discriminate between expression of a gene in the SV40 viral genome and expression of the same gene integrated into a host chromosome.  相似文献   

4.
The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle.  相似文献   

5.
A peptide Tyr.Arg.Asp.Leu.Lys.Leu corresponding to the carboxy-terminal six amino acids of small-t antigen predicted from the DNA sequence of SV40 was synthesised, coupled to bovine serum albumin and to ovalbumin and used to raise antibody in rabbits. The sera obtained immunoprecipitated [125I]peptide. It also recognised SV40 small-t that was synthesised in vitro from SV40 mRNA or extracted from SV40 infected monkey cells. The immunoprecipitation of small-t was inhibited by added peptide. To demonstrate that the determinant was present at the carboxy-terminal end of the molecule, truncated versions of small-t coded for by 0.54-0.59 deletion mutants were tested. dl 890 small-t, which contains an in-phase deletion removing nine amino acids but leaving the carboxy-terminal sequences intact, was recognised by the antipeptide serum. By contrast dl 885 small-t, which has an out-of-phase deletion leading to an altered carboxy terminus coded in an alternative reading frame, was not recognised. The data confirm the location and specificity of the determinant recognised on small-t by the antipeptide serum.  相似文献   

6.
7.
We have investigated the structure of simian virus 40 (SV40) DNA integrated into the genome of transformed mouse mKS-A cells. We have identified at least six independent integration units containing intact or truncated SV40 DNA sequences. One integration unit was isolated from a genomic mKS-A cell library and investigated by restriction enzyme analysis and partial nucleotide sequencing. This integration unit contains one apparently intact SV40 genome flanked on both sides by truncated versions of the SV40 genome. One of the flanking elements contains a large deletion in the SV40 "late" region and an abbreviated SV40 "early" region. This element was efficiently excised and mobilized after fusion of mKS-A to COS cells. The excision products invariably included the entire SV40 early region even though they were derived from an integrated element lacking this part of the SV40 genome. An analysis of this discrepancy led to the conclusion that the early region sequences were acquired by homologous recombination and, furthermore, that homologous excisional recombination was clearly preferred over non-homologous recombination.  相似文献   

8.
We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome. These data are discussed in terms of the apparent cell specificity of viral enhancer elements.  相似文献   

9.
Simian virus 40 (SV40) DNA insertions from SV40-transformed mouse cell line W-2K-11 and its revertants M18, M31, and M42 were cloned. W-2K-11 cells contain 1.5 copies of the SV40 sequences in a partially tandem duplicated form. The endpoints of the viral sequences at the virus-host junctions are located very close to those reported by others, indicating that there are some preferred sites for integration and rearrangement in SV40 sequences. One flanking cellular sequence is a long stretch of adenine and thymine with repeated AAAT, and the other is a stretch of guanine and cytosine with repeated CCG. There are patchy homologies between the flanking cellular sequences and the corresponding parental SV40 sequences. The sequences around both junctions were retained in all the revertants, whereas most of the internal SV40 sequences coding for large T antigen were deleted. The coding sequences for small T antigen are intact, and small T antigen was expressed in all the revertants. The fragments cloned from M18 and M42 were identical and 3.9 kilobases of SV40 sequences were deleted. The parental SV40 sequences around the deletion site have sequences capable of forming a secondary structure which might reduce the effective distance between the two regions. The SV40 DNA retained in M31 is colinear with SV40 virion DNA, and a unit length of SV40 DNA was deleted within the SV40 sequences present in W-2K-11 cells. These results indicated that two types of deletion occurred during the reversion, one between homologous sequences and the other between nonhomologous sequences.  相似文献   

10.
A bacterial plasmid carrying the early region of SV40 (pOT) has been stably established in high molecular weight (hmw) DNA of mouse L cells by selection for the herpes virus thymidine kinase (tk) gene. DNA blotting has demonstrated that most cell lines contain multiple discrete copies of pOT, generally with an intact SV40 early region. No free copies of pOT have been detected. Both pOT and tk sequences may be amplified up to 20–200 copies of the SV40 early region. In contrast to the uniform staining pattern normally observed in SV40-transformed lines, indirect immunofluorescence using antiserum to the SV40 T antigen has demonstrated that the expression of the early region is heterogeneous in these cell lines. This fraction expressing T is characteristic of a given cell line, and varies from 0 to 99% positive. Several pOT cell lines have been fused to simian cells, and replicating low molecular weight DNAs were isolated from the heterokaryons. Transformation of E. coli with this DNA demonstrates that pOT can be rescued from hmw DNA in L cells and reestablished as a plasmid in E. coli. Excision is generally precise when pOT is introduced to the murine cells as a supercoiled molecule, and imprecise when pOT is introduced in linear form.  相似文献   

11.
The monoclonal antibody PAb280 binds to small t antigen but not to large T antigen. Its binding site within the unique region of small t antigen was localized by studying its reaction with simian virus 40 mutants, other papovaviruses, and bacterial expression vectors coding for fragments of small t antigen. The antibody was used to define the cellular location of small t antigen by immunocytochemistry and by immunoprecipitation of subcellular extracts of infected cells. PAb280 reacts strongly with a cytoplasmic form of small t antigen that appears to be associated with the cytoskeleton and is not detected by antibodies directed to the common N terminus of small t and large T antigens. Immunoperoxidase staining of cells infected by the simian virus 40 defective strain SV402 with PAb280 and other anti-T antibodies demonstrated that this virus produced an N-terminal fragment of large T antigen as well as small t antigen. In cells infected by the virus, this fragment was located in the cell nucleus but was very unstable. These results suggest that the activity of the SV402 virus in transformation assays may not be entirely due to the action of small t antigen alone.  相似文献   

12.
Regulation of simian virus 40 gene expression in Xenopus laevis oocytes.   总被引:4,自引:0,他引:4  
Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.  相似文献   

13.
African green monkey cells (CV-1P) were microinjected with highly purified SV40 T antigen using protein-loaded red cell ghosts and polyethylene glycol as fusagen. The microinjected cells were infected with a temperature-sensitive mutant of SV40 (tsA209) which is defective in the initiation of viral DNA synthesis. Using in situ hybridization as an assay method, we found that PEG-microinjection of both partially and highly purified T antigen resulted in an increase in the amount of viral DNA sequences in the monolayer. Moreover, 3H-thymidine-labeled and unlabeled Hirt supernatant from microinjected, tsA209-injected cells contained significantly more SV40 DNA than comparable extracts from sham-injected, tsA209-infected or uninfected cells, which were tested in parallel. Thus the introduction of highly purified, "large" SV40 T antigen led to phenotypic complementation of the tsA defect in viral DNA synthesis.  相似文献   

14.
15.
Simian virus 40 (SV40)-mediated transformation of human diploid fibroblasts has provided an effective experimental system for studies of both "senescence" in cell culture and carcinogenesis. Previous interpretations may have been complicated, however, by the semipermissive virus-cell interaction. In earlier studies, we previously demonstrated that the human diploid fibroblast line HS74 can be efficiently transformed by DNA from replication-defective mutants of SV40 containing a deletion in the viral origin for DNA synthesis (SVori-). In the current study, we found that such SVori- transformants show a significantly increased life span in culture, as compared with either HS74 or an independent transformant containing an intact viral genome, but they nonetheless undergo senescence. We have clonally isolated six immortalized derivatives of one such transformant (SV/HF-5). Growth studies indicate that the immortalized cell lines do not invariably grow better than SV/HF-5 or HS74. Genetic studies involving karyotypic analysis and Southern analysis of integrated viral sequences demonstrated both random and nonrandom alterations. All immortalized derivatives conserved one of the two copies of SV40 sequences which expressed a truncated T antigen. These cloned SV40-transformed cell lines, pre- and postimmortalization, should be useful in defining molecular changes associated with immortalization.  相似文献   

16.
The mechanism of SV40-induced cellular transformation was investigated by two-dimensional gel analysis of 35S- and 32P-labeled proteins of various cells. These included rat and mouse cells, either transformed or abortively infected by SV40 wild type, small t deletion mutants, and a large T temperature-sensitive mutant. Synthesis, turnover, or (de)phosphorylation of multiple protein spots was found to be reproducibly and quantitatively influenced by the transformed and/or infected status. Several of these alterations were attributable to the biological activity of either large T or small t antigen. Most changes in 35S-labeled proteins corresponded to a decreased intensity of the gel spots in transformed cells, while hyperphosphorylated proteins were more common than hypophosphorylated ones. About half of the polypeptide alterations in 35S-and 32P-labeled SV40-transformed rat cells, including a set of 35S-labeled small t-dependent changes were shared by Rous sarcoma virus-transformed cells. In contrast, small t-dependent (de)phosphorylation was rarely detected. Phosphoamino acid analysis of selected phosphoprotein spots of rat cells and alkaline hydrolysis of whole two-dimensional gels did not reveal any evidence for increased tyrosine-specific phosphorylation after SV40-induced transformation. Abortively infected mouse cells showed many protein alterations, also observed in stably transformed cells. However, the latter cells contained additional changes, also affecting several phosphoproteins and possibly related to the establishment of transformation. These findings are discussed in relation to the biological functions, known or presumed, for SV40 large T and small t antigens during transformation.  相似文献   

17.
Subcutaneous injection of wild-type simian virus 40 into Syrian hamsters normally induces fibrosarcomas at the injection site. We showed that subcutaneous injection of three different small t deletion mutants (dl884, dl883, and dl890) led to the formation of abdominal reticulum cell sarcomas (lymphomas) in about 15% of the animals bearing tumors. The remainder of the tumors were fibrosarcomas occurring with prolonged latencies at the site of injection. We postulated that, in the absence of an active small t protein, which is thought to have cell growth-promoting properties, the mutant virus preferentially transforms rapidly proliferating lymphoid cells.  相似文献   

18.
Simian virus 40 (SV40) T antigen binds to the tumor suppressor p53 protein, and this association may contribute to oncogenic transformation by the virus. We investigated the importance of this binding on transformation by examining three replication-competent mutants of SV40 (402DE, 402DN, and 402DH). These mutants express T antigens defective in binding to human and monkey p53s but retain some binding with mouse p53. All showed significant reduction in their ability to induce transformed cell foci of two normal human cell lines as well as a slight reduction with mouse embryo cells. Other comparable mutants which express T antigens retaining the ability to complex with p53 were able to induce foci at wild-type levels in both human and mouse cells. Further studies were performed with five T-antigen-positive clones isolated from the few human cell foci that appeared after transfection with 402 mutant DNAs. All five clones reached senescence at about the same point as did the parental untransformed cells. However, six other human cell clones obtained after transfection with DNA from nondefective mutants or wild-type virus were still growing well at more than 10 passages beyond their expected life span. These results suggest that the ability of T antigen to form stable complexes with p53 is necessary for SV40 to extend the life span and partially transform human cells in culture.  相似文献   

19.
Polyclonal antibodies were used to assay human embryonal carcinoma (EC), differentiating EC, yolk sac carcinoma, and teratoma cells for expression of viral early antigen (T-Ag) after infection with simian virus 40 (SV40). Cells of four EC lines were induced to differentiate by cultivation at low density or by exposure to retinoic acid or dimethyl sulfoxide. After infection with SV40, T-Ag was expressed by 1%, or less, of the cells (presumed to be differentiated derivatives) in only some EC cultures whereas the antigen was synthesized by a significant percentage of the yolk sac carcinoma, teratoma, and differentiating EC cells. Also, viral late proteins were produced by EC cells infected with human adenovirus type 7 (Ad7), and SV40 T-Ag was expressed by EC cells after infection with PARA, which is an Ad7-SV40 hybrid virus containing the SV40 T-Ag sequence controlled by Ad7 late regulatory sequences. Thus, T-Ag is not synthesized by the parental EC cells infected with SV40, but it is expressed in cultures of infected differentiated derivatives. The EC cells produce T-Ag, however, when expression of the viral protein is controlled by the Ad7 regulatory sequences in PARA particles. These results demonstrate that expression of T-Ag after infection with SV40 is an indicator of EC cell differentiation and also raise the possibility that, as in mouse EC cells infected with the virus, the SV40 regulatory sequences controlling T-Ag synthesis are not active in human EC cells.  相似文献   

20.
To understand the process and biological significance of metabolic stabilization of p53 during simian virus 40 (SV40)-induced cellular transformation, we analyzed cellular and viral parameters involved in this process. We demonstrate that neither large T expression as such nor the cellular phenotype (normal versus transformed) markedly influence the stability of p53 complexed to large T in SV40 abortively infected BALB/c mouse fibroblasts. In contrast, metabolic stabilization of p53 is an active cellular event, specifically induced by SV40. The ability of SV40 to induce a cellular response leading to stabilization of p53 complexed to large T is independent from the cellular phenotype and greatly varies between different cells. However, metabolic stability was conferred only to p53 in complex with large T, whereas the free p53 in these cells remained metabolically unstable. Comparative analyses of cellular transformation in various cells differing in stability of p53 complexed to large T upon abortive infection with SV40 revealed a strong correlation between the ability of SV40 to induce metabolic stabilization and its transformation efficiency. Our data suggest that metabolic stabilization and the ensuing enhanced levels of p53 are important for initiation and/or maintenance of SV40 transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号