首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
UV light has been the most important energy source on the primitive Earth. However, very few experiments have been performed to test directly the possible role of this energy source on the chemical evolution of the primitive atmosphere, mainly on account of experimental difficulties. Experiments are generally performed with other excitations, mainly electric discharge, and it is frequently assumed that UV irradiation would give similar results.As theoretical considerations make this assumption questionable, direct experimental controls have been undertaken: Model primitive atmospheres have been submitted to 147 nm UV light and the gaseous phase has been analysed. Preliminary qualitative results concerning CH4–NH3 atmospheres are reported.Irradiation of pure CH4 gives rise to the synthesis of a large number of hydrocarbons, mainly saturated hydrocarbons but including also unsaturated ones as, C2H2, C2H4, C3H6, C3H4. These insaturated hydrocarbons are synthetized at a very low rate when ammonia is present in the medium.Irradiations of CH4–NH3 mixtures give rise, in addition to hydrocarbons, to important amounts of HCN (about 0.1%) and to lesser amounts of CH3CN and C2H5CN. No unsaturated nitriles such as acrylonitrile and cyanoacetylene have been detected. Search for amines is in progress.These results evidence that UV irradiation may contribute largely to synthesis of HCN in CH4–NH3 atmospheres and, consequently to the synthesis of many biochemical compounds that can be derivated from HCN. However, synthesis of other compounds, such as pyrimidines, which can derivate from other nitriles, such as cyanoacetylene, cannot be initiated only by UV light, contrary to electric discharges. In addition, if electric discharges are very efficient for synthesis of nitriles in CH4–N2 atmospheres, there is not yet evidence that UV light is able to do so.Presented at the 2nd ISSOL Meeting and the 5th ICOL in Kyoto, 5–10 April, 1977.  相似文献   

2.
The purpose of the present study was to determine whether ultraviolet light (UV) irradiation of amino acids produces compounds with affinity for the Ah receptor. Aqueous solutions of L-tryptophan were exposed to radiation from an unfiltered high-pressure mercury lamp. The photoproducts formed were solvent-extracted or concentrated on Sep-Pak C18 cartridges. The concentrated extracts or eluants were treated for their ability to compete with 3H-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Binding was assayed in liver cytosolic preparations from Sprague-Dawley rats using a technique based on hydroxylapatite separation. Photoproducts with receptor affinity were formed in a time-dependent manner. Histidine and tryptamine also gave products upon UV irradiation that competed with TCDD. Commercial tryptophan, at least aged, contained trace amounts of impurities with receptor affinity. Analysis by TLC and high-pressure liquid chromatography of the photo-products of tryptophan showed a minimum of three different binding compounds. Two of the products were studied in greater detail. One of them, showing UV absorbance and yellow fluorescence, gave a molecular ion (M+) of 284 and the other gave M+ 312 but showed little UV absorption and fluorescence. The concentration, based on mass spectrometry quantifications, of the two compounds that displaced more than 50% of TCDD was found to be extremely low, giving Kd values of 0.44 nM (M+ 312) and 0.07 nM (M+ 284). The existence of high affinity receptors for oxidized amino acids is postulated and their possible role in the proliferative cellular responses to TCDD and tryptophan is discussed briefly.  相似文献   

3.
Amino acids were formed from carbon monoxide, nitrogen and water, which are possible constituents of the primitive earth's atmosphere, by irradiation with high energy particles (components of cosmic rays). Glycine yield was proportional to the total energy deposited to the gas mixture, and its G-value was as high as 0.02 when the carbon monoxide/nitrogen ratio was 1. Based on an estimate of the effective energies of various types of energy sources available in the primitive earth's atmosphere for amino acid synthesis, it is suggested that cosmic rays were one of the most important energy sources for the synthesis of amino acids on the primitive earth.  相似文献   

4.
A series of prebiotic mixtures of simple molecules, sources of C, H, N, and O, were examined under conditions that may have prevailed during the Hadean eon (4.6-3.8 billion years), namely an oxygen-free atmosphere and a significant UV radiation flux over a large wavelength range due to the absence of an ozone layer. Mixtures contained a C source (methanol, acetone or other ketones), a N source (ammonia or methylamine), and an O source (water) at various molar ratios of C : H : N : O. When subjected to UV light or heated for periods of 7 to 45 days under an argon atmosphere, they yielded a narrow product distribution of a few principal compounds. Different initial conditions produced different distributions. The nature of the products was ascertained by gas chromatographic-mass spectral analysis (GC-MS). UVC irradiation of an aqueous methanol-ammonia-water prebiotic mixture for 14 days under low UV dose (6 x 10(-2) Einstein) produced methylisourea, hexamethylenetetramine (HMT), methyl-HMT and hydroxy-HMT, whereas under high UV dose (45 days; 1.9 x 10(-1) Einstein) yielded only HMT. By contrast, the prebiotic mixture composed of acetone-ammonia-water produced five principal species with acetamide as the major component; thermally the same mixture produced a different product distribution of four principal species. UVC irradiation of the CH(3)CN-NH(3)-H(2)O prebiotic mixture for 7 days gave mostly trimethyl-s-triazine, whereas in the presence of two metal oxides (TiO(2) or Fe(2)O(3)) also produced some HMT; the thermal process yielded only acetamide.  相似文献   

5.
Conditions for affine sorbents creation by means of linear photocopolymer photochemical synthesis, its thermochemical granulation-crosslinking, and grafting by L-lysine hydrochloride as an sorbent affinant (ligand) were investigated. Linear photocopolymer properties depending on concentration ratio of photopolymerisation components, chemical nature of reaction media (solvent), and UV irradiation time were studied. Dioxane is shown to be the optimal solvent. Dependence of molecular mass on UV irradiation time (energy) is extremal with maximum at 5 hours and Mm = 243,300. Biospecific properties of several created affine sorbents were investigated.  相似文献   

6.
Unscheduled DNA synthesis induced by 254-nm UV radiation in chicken embryo fibroblasts was examined for 24 h following irradiation, while cells were kept in the dark. The effect on this repair process of a 2-4 h exposure to photoreactivating light immediately after UV was studied. Initial [3H]thymidine incorporation in the light-treated cells was only slightly different from that in cells not exposed to light, but a distinct difference in rate and cumulative amount of unscheduled DNA synthesis was seen several hours after irradiation. By varying the UV dose and the time allowed for photoreactivation, the amount of dimers (determined as sites sensitive to a M. luteus UV-endonuclease) and non-dimers could be changed. The results of these experiments suggest that excision repair of dimers, rather than non-dimer products, is responsible for the unscheduled DNA synthesis seen after UV irradiation.  相似文献   

7.
Organic matter in carbonaceous chondrites can be separated into three fractions. The first component, the fraction that is insoluble in chloroform and methanol, has a part which is of interstellar origin (1). The other two fractions (chloroform-soluble hydrocarbons and methanol-soluble polar organics) are hypothesized to have been synthesized on a planetoid body (2). We propose that the polar organics, i.e., amino acids, were synthesized close to its surface by the radiolysis of hydrocarbons and ammonium carbonate in a liquid water environment. Some hydrocarbons may have been synthesized by a Fischer-Tropsch mechanism (3) in the interior of the body. Ferrous ion acted as a protection against back reactions. The simultaneous synthesis of iron-rich clays with the polar organics may be indicative of events related to the origin of life on Earth.  相似文献   

8.
Zinc oxide (ZnO), a widely used ingredient in dermatological preparations and sunscreens, is clastogenic in vitro, but not in vivo. Given that ZnO has an approximately four-fold greater clastogenic potency in the presence of UV light when compared with that in the dark, it has been suggested to be photo-clastogenic. In order to clarify whether this increased potency is a genuine photo-genotoxic effect, we investigated the clastogenicity of ZnO (mean particle size, 100 nm) in Chinese hamster ovary (CHO) cells in the dark (D), in pre-irradiated (PI, i.e. UV irradiation of cells followed by treatment with ZnO) and in simultaneously irradiated (SI, i.e. ZnO treatment concurrent with UV irradiation) CHO cells at UV doses of 350 and 700 mJ/cm(2). The cytotoxicity of ZnO to CHO cells under the different irradiation conditions was as follows: SI>PI>D. In the dark, ZnO produced a concentration-related increase in chromosome aberrations (CA). In PI or SI CHO cells, ZnO was clastogenic at significantly lower concentrations (approximately two- to four-fold) when compared with effective concentrations in the dark, indicating an increased susceptibility of CHO cells to ZnO-mediated clastogenic effects due to UV irradiation per se. The incidence of CA in SI or PI cells was generally higher than that in the dark. At similar ZnO concentrations, SI conditions generally produced higher CA incidence than PI conditions. However, when ZnO concentrations producing similar cytotoxicity were compared, CA incidences under PI or SI conditions were nearly identical. The modest increase in the clastogenic potency of ZnO following UV irradiation contrasts with the results observed with genuine photo-clastogenic agents, such as 8-MOP, which may produce an increase in clastogenic potency of >15,000-fold under SI conditions. Our results provide evidence that, under conditions of in vitro photo-clastogenicity tests, UV irradiation of the cellular test system per se may produce a slight increase in the genotoxic potency of compounds that are clastogenic in the dark. In conclusion, our data suggest that minor increases in clastogenic potency under conditions of photo-genotoxicity testing do not necessarily represent a photo-genotoxic effect, but may occur due to an increased sensitivity of the test system subsequent to UV irradiation.  相似文献   

9.
With a dense N2-CH4 atmosphere rich in organics, both in gas and aerosol phases, and with the possible presence of hydrocarbons oceans on its surface, Titan, the largest satellite of Saturn, appears as a natural laboratory to study chemical evolution toward complex organic systems, in a planetary environment and over a long time scale. Thanks to many analogies with planet Earth, it provides a unique way to look at the various physical and chemical processes, and their couplings which may have been involved in terrestrial prebiotic chemistry. Indeed, analogies with the Earth have a limit since Titan's temperatures are much lower than on the Earth and since liquid water is totally absent. However, from that aspect, Titan also serves as a reference laboratory worth studying — indirectly — the role of liquid water in exobiology. The Cassini-Huygens mission currently developed by NASA and ESA will send an orbiter around Saturn and Titan and a probe in Titan's atmosphere. This mission which will be launched in 1997 for an expected arrival in 2004, offers a unique opportunity to study in detail extra-terrestrial, not life-controled, organic processes, and consequently it will have significant implications in the fields of exobiology and the origins of life.This paper is dedicated to the memory of Cyril PONNAMPERUMA who largely contributed to the development of the scientific fields of Chemical Evolution and Exobiology.  相似文献   

10.
By means of UV-spectroscopy, gel filtration, thin layer and paper chromatography, it has been shown that the action of UV irradiation and heat on a dry mixture of nitrogenous bases and deoxyribose results in the formation of nucleoside pool, particulary deoxyadenosine. These energy sources were chosen in order to imitate at least approximately the conditions assumed to exist on the primitive Earth. Similar synthesis takes place in the atmosphere of the three gases studied, being more intensive in CO2 than in N2 or O2.  相似文献   

11.
We have investigated gas-phase reactions of N(2D) with the most abundant hydrocarbons in the atmosphere of Titan by the crossed molecular beam technique. In all cases, molecular products containing a novel CN bond are formed, thus suggesting possible routes of formation of gas-phase nitriles in the atmosphere of Titan and primordial Earth. The same approach has been recently extended to the study of radical–radical reactions, such as the reaction of atomic oxygen with the CH3 and C3H5 radicals. Products other than those already considered in the modeling of planetary atmospheres and interstellar medium have been identified. Presented at: National Workshop On Astrobiology: Search For Life In The Solar System, Capri, Italy, 26 to 28 October, 2005.  相似文献   

12.
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.  相似文献   

13.
Hans Kleinig  Bodo Liedvogel 《Planta》1980,150(2):166-169
1. Fatty acid synthesis in isolated intact chromoplasts from [1-14C]acetate was made possible by using ATP, ADP (via adenylate kinase), and, with decreasing efficiency, UTP, CTP, and GTP as energy sources. 2. The glycolytic path from dihydroxyacetone phosphate to acetyl-CoA operates within the chromoplasts. The glycolytic intermediates, especially 2-phosphoglycerate and phosphoenolpyruvate, served as very effective energy donors for fatty acid synthesis by phosphorylating the endogenous adenine nucleotide pool. 3. In the presence of exogenous ATP or ADP, appreciable amounts of in vitro formed fatty acids were found as acyl-CoA and subsequent products, mainly phosphatidylcholine. When other energy sources were used most of the acids formed were in the free form, and to a minor extent, in the phosphatidic acid and diacylglycerol fractions. Similar results have recently been reported for spinach chloroplasts (Kleinig and Liedvogel 1979, FEBS Lett.101, 339–342).Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - UTP uridine triphosphate - CTP cytidine triphosphate - GTP gnanosine triphosphate  相似文献   

14.
Kawamura M  Kiyotake R  Kudo K 《Chirality》2002,14(9):724-726
Novel photoresponsive axially chiral monophosphine ligands containing azobenzene moiety were prepared and applied to a palladium-catalyzed allylic alkylation. The reaction of rac-1,3-diphenyl-2-propenyl acetate gave the alkylated products with up to 90% enantiomeric excess. The ligand exhibited a trans to cis photoisomerization upon irradiation with UV light.  相似文献   

15.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

16.
17.
Exponentially growing human erythroleukemia K562 cells were permeabilized and the dose dependent decrease of DNA synthesis rate was measured after ultraviolet (UV B, 290 nm) irradiation. Cells were able to overcome 2 and 5 J/m2 UV doses, partial recovery was observed at 15 J/m2, while at high (25 J/m2) UV dose replicative DNA synthesis remained suppressed. K562 cells were subjected to synchronization prior to and after UV irradiation (24 J/m2) and 18 fractions were collected by centrifugal elutriation. Cell cycle analysis by flow cytometry did not show early apoptotic cells after UV irradiation. The gradual increase in DNA content typical for non-irradiated cells was contrasted by an early S phase block between 2.2 and 2.4 C-values after UV irradiation. Cell cycle dependent chromatin changes after ultraviolet irradiation were seen as a fine fibrillary network covering the mainly fibrous chromatin structures and incompletely folded primitive chromosomes. Based on observations after UV irradiation and on earlier results with cadmium treatment and gamma irradiation, we confirm that typical chromatin changes characteristic to genotoxic agents can be recognized and classified.  相似文献   

18.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

19.
The signaling events which mediate activation of c-Jun N-terminal kinase (JNK) are not yet well characterized. To broaden our understanding of upstream mediators which link extracellular signals to the JNK pathway, we investigated the role of phosphatidylinositol (PI) 3-kinase in epidermal growth factor (EGF)-mediated JNK activation. In this report we demonstrate that a dominant negative form of PI 3-kinase as well as the inhibitor wortmannin blocks EGF-induced JNK activation dramatically. However, wortmannin does not have an effect on JNK activation induced by UV irradiation or osmotic shock. In addition, a membrane-targeted, constitutively active PI 3-kinase (p110beta) was shown to produce in vivo products and to activate JNK, while a kinase-mutated form of this protein showed no activation. On the basis of these experiments, we propose that PI 3-kinase activity plays a role in EGF-induced JNK activation in these cells.  相似文献   

20.
Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4-5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating L-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5-16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34±0.32), arginine (Arg, 1.66±0.39), glutamine (Gln, 1.75±0.60), and proline (Pro, 1.48±0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56±0.30). However, essential amino acids mixtures (BCAA+Arg+Gln, BCAA+Gln, and BCAA+Pro) significantly increased the FSR (2.07±0.58, 2.04±0.54, 2.01±0.50 and 2.07±0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号