首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微生物介导的碳氮循环过程对全球气候变化的响应   总被引:10,自引:0,他引:10  
沈菊培  贺纪正 《生态学报》2011,31(11):2957-2967
土壤是地球表层最为重要的碳库也是温室气体的源或汇。自工业革命以来,对土壤温室气体的容量、收支平衡和通量等已有较多研究和估算,但对关键过程及其源/汇的研究却十分有限。微生物是土壤碳氮转化的主要驱动者, 在生态系统碳氮循环过程中扮演重要的角色,对全球气候变化有着响应的响应、适应及反馈,然而其个体数量,群落结构和多样性如何与气候扰动相互关联、进而怎样影响生态系统过程的问题仍有待进一步探索。从微生物介导的碳氮循环过程入手,重点讨论微生物对气候变化包括温室气体(CO2,CH4,N2O)增加、全球变暖、大气氮沉降等的响应和反馈,并由此提出削减温室气体排放的可能途径和今后发展的方向。  相似文献   

2.
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.  相似文献   

3.
Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land‐use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem‐based management and resilience thinking, before highlighting the need for climate change‐ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human‐assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change‐ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long‐term efficacy of local management actions is to be maintained and coral reefs are to survive.  相似文献   

4.
Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long‐term resilience of semiarid forests against climate change are limited. In this study, long‐term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long‐term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900–2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests.  相似文献   

5.
There are several air pollution issues that concern the international community at the regional and global level, including acid deposition, heavy metals, persistent organic pollutants, stratospheric ozone depletion, and climate change. Governments at the regional and global levels have entered into various agreements in an effort to deal with these problems. This paper deals with two major global atmospheric change issues: stratospheric ozone depletion and climate change. The focus is on the policy responses of the United States to these global issues. The United States has signed and ratified international agreements to deal with both problems. The Vienna Convention and the Montreal Protocol on Substances that Deplete the Ozone Layer have led to an effort in both developed and developing countries to phase out ozone depleting substances. The United Nations Framework Convention on Climate Change (UNFCCC) has been signed and ratified by over 180 countries. The UNFCC contained no binding targets and timetables for emissions reductions. The Kyoto Protocol (1997) to the UNFCCC did contain targets and timetables for reductions of greenhouse gases on the part of developed countries. The United States has signed but not ratified the Kyoto Protocol. The United States has experienced some movement to reduce greenhouse gas emissions on the part of various levels of government as well as the private sector. The policy process is constantly informed by scientific research. In the case of stratospheric ozone depletion and climate change, much of this work is carried out under the auspices of international scientific panels. From a policy perspective, there is a great deal of interest in the use of indicators for assessing the scope and magnitude of these problems, both for fashioning policy responses as well as assessing the impact of adopted programs to reduce ozone depleting substances, and potentially, greenhouse gases. This paper will discuss some of the indicators used for stratospheric ozone depletion and climate change.  相似文献   

6.
The sustainability of the vast Arctic permafrost carbon pool under climate change is of paramount importance for global climate trajectories. Accurate climate change forecasts, therefore, depend on a reliable representation of mechanisms governing Arctic carbon cycle processes, but this task is complicated by the complex interaction of multiple controls on Arctic ecosystem changes, linked through both positive and negative feedbacks. As a primary example, predicted Arctic warming can be substantially influenced by shifts in hydrologic regimes, linked to, for example, altered precipitation patterns or changes in topography following permafrost degradation. This study presents observational evidence how severe drainage, a scenario that may affect large Arctic areas with ice‐rich permafrost soils under future climate change, affects biogeochemical and biogeophysical processes within an Arctic floodplain. Our in situ data demonstrate reduced carbon losses and transfer of sensible heat to the atmosphere, and effects linked to drainage‐induced long‐term shifts in vegetation communities and soil thermal regimes largely counterbalanced the immediate drainage impact. Moreover, higher surface albedo in combination with low thermal conductivity cooled the permafrost soils. Accordingly, long‐term drainage effects linked to warming‐induced permafrost degradation hold the potential to alleviate positive feedbacks between permafrost carbon and Arctic warming, and to slow down permafrost degradation. Self‐stabilizing effects associated with ecosystem disturbance such as these drainage impacts are a key factor for predicting future feedbacks between Arctic permafrost and climate change, and, thus, neglect of these mechanisms will exaggerate the impacts of Arctic change on future global climate projections.  相似文献   

7.

Purpose

The impact of anthropogenic greenhouse gas (GHG) emissions on climate change receives much focus today. This impact is however often considered only in terms of global warming potential (GWP), which does not take into account the need for staying below climatic target levels, in order to avoid passing critical climate tipping points. Some suggestions to include a target level in climate change impact assessment have been made, but with the consequence of disregarding impacts beyond that target level. The aim of this paper is to introduce the climate tipping impact category, which represents the climate tipping potential (CTP) of GHG emissions relative to a climatic target level. The climate tipping impact category should be seen as complementary to the global warming impact category.

Methods

The CTP of a GHG emission is expressed as the emission’s impact divided by the ‘capacity’ of the atmosphere for absorbing the impact without exceeding the target level. The GHG emission impact is determined as its cumulative contribution to increase the total atmospheric GHG concentration (expressed in CO2 equivalents) from the emission time to the point in time where the target level is expected to be reached, the target time.

Results and discussion

The CTP of all the assessed GHGs increases as the emission time approaches the target time, reflecting the rapid decrease in remaining atmospheric capacity and thus the increasing potential impact of the GHG emission. The CTP of a GHG depends on the properties of the GHG as well as on the chosen climatic target level and background scenario for atmospheric GHG concentration development. In order to enable direct application in life cycle assessment (LCA), CTP characterisation factors are presented for the three main anthropogenic GHGs, CO2, CH4 and N2O.

Conclusions

The CTP metric distinguishes different GHG emission impacts in terms of their contribution to exceeding a short-term target and highlights their increasing importance when approaching a climatic target level, reflecting the increasing urgency of avoiding further GHG emissions in order to stay below the target level. Inclusion of the climate tipping impact category for assessing climate change impacts in LCA, complimentary to the global warming impact category which shall still represent the long-term climate change impacts, is considered to improve the value of LCA as a tool for decision support for climate change mitigation.  相似文献   

8.
Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta‐analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2, and O3) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (?8% and ?10%, respectively) and drought (?15% and ?42%), and in opposite ways to elevated CO2 (?23% and +55%) and warming (+53% and ?23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3‐insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4‐phosphate pathway. Future results from manipulative experiments and long‐term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta‐analysis.  相似文献   

9.
蒋小雪  金飚 《西北植物学报》2012,32(10):2139-2150
植物对全球气候变化的响应近年来已成为植物学研究热点之一,而有性生殖阶段对环境的变化最敏感。本文较系统地综述了过去数十年气候变化主要因子温度、温室气体、紫外线B辐射和气溶胶对植物花期、授粉受精和生殖产量等有性生殖过程的影响。主要概括:(1)温度适度升高促使大部分植物花期提前,加速授粉受精过程,但同时使传粉者活动期和花期分离而影响授粉受精,其部分增加生殖产量,但温度过高则减少产量。(2)温室气体中水汽过多或过少都减少植物生殖产量;CO2浓度升高一般有利于植物授粉受精,增加生殖产量;O3浓度增加则不利于植物生殖生长。(3)增强的UV-B辐射影响植物花期,不利于授粉受精,对生殖产量影响复杂。(4)气溶胶排放量增加对植物生殖产量的影响依据气溶胶浓度、植物冠层结构和环境条件不同而异。最后分析总结了国内外相关研究中仍存在的不足之处,为更好理解和深入研究植物对气候变化的响应机制提供参考。  相似文献   

10.
Conventional cost‐effectiveness calculations ignore the implications of greenhouse gas (GHG) emissions timing and thus may not properly inform decision‐makers in the efficient allocation of resources to mitigate climate change. To begin to address this disconnect with climate change science, we modify the conventional cost‐effectiveness approach to account for emissions timing. GHG emissions flows occurring over time are translated into an ‘Equivalent Present Emission’ based on radiative forcing, enabling a comparison of system costs and emissions on a consistent present time basis. We apply this ‘Present Cost‐Effectiveness’ method to case studies of biomass‐based electricity generation (biomass co‐firing with coal, biomass cogeneration) to evaluate implications of forest carbon trade‐offs on the cost‐effectiveness of emission reductions. Bioenergy production from forest biomass can reduce forest carbon stocks, an immediate emissions source that contributes to atmospheric greenhouse gases. Forest carbon impacts thereby lessen emission reductions in the near‐term relative to the assumption of biomass ‘carbon neutrality’, resulting in higher costs of emission reductions when emissions timing is considered. In contrast, conventional cost‐effectiveness approaches implicitly evaluate strategies over an infinite analytical time horizon, underestimating nearer term emissions reduction costs and failing to identify pathways that can most efficiently contribute to climate change mitigation objectives over shorter time spans (e.g. up to 100 years). While providing only a simple representation of the climate change implications of emissions timing, the Present Cost‐Effectiveness method provides a straightforward approach to assessing the cost‐effectiveness of emission reductions associated with any climate change mitigation strategy where future GHG reductions require significant initial capital investment or increase near‐term emissions. Timing is a critical factor in determining the attractiveness of any investment; accounting for emissions timing can better inform decisions related to the merit of alternative resource uses to meet near‐, mid‐, and long‐term climate change mitigation objectives.  相似文献   

11.
The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE) resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results.  相似文献   

12.
Global warming and land-use change could have profound impacts on ecosystem carbon (C) fluxes, with consequent changes in C sequestration and its feedback to climate change. However, it is not well understood how net ecosystem C exchange (NEE) and its components respond to warming and mowing in tallgrass prairie. We conducted two warming experiments, one long term with a 1.7°C increase in a C4-dominated grassland (Experiment 1), and one short term with a 2.8°C increase in a C3-dominated grassland (Experiment 2), to investigate main and interactive effects of warming and clipping on ecosystem C fluxes in the Great Plains of North America during 2009–2011. An infrared radiator was used to simulate climate warming and clipping once a year mimicked mowing in both experiments. The results showed that warming significantly increased ecosystem respiration (ER), slightly increased GPP, with the net outcome (NEE) being little changed in Experiment 1. In contrast, warming significantly suppressed GPP and ER in both years, with the net outcome being enhanced in NEE (more C sequestration) in 2009–2010 in Experiment 2. The C4-dominated grassland showed a much higher optimum temperature for C fluxes than the C3-dominated grassland, which may partly contribute to the different warming effects in the two experiments. Clipping significantly enhanced GPP, ER, and NEE in both experiments but did not significantly interact with warming in impacting C fluxes in either experiment. The warming-induced changes in ecosystem C fluxes correlated significantly with C4 biomass proportion but not with warming-induced changes in either soil temperature or soil moisture across the plots in the experiments. Our results demonstrate that carbon fluxes in the tallgrass prairie are highly sensitive to climate warming and clipping, and C3/C4 plant functional types may be important factor in determining ecosystem response to climate change.  相似文献   

13.
High‐elevation forests are experiencing high rates of warming, in combination with CO2 rise and (sometimes) drying trends. In these montane systems, the effects of environmental changes on tree growth are also modified by elevation itself, thus complicating our ability to predict effects of future climate change. Tree‐ring analysis along an elevation gradient allows quantifying effects of gradual and annual environmental changes. Here, we study long‐term physiological (ratio of internal to ambient CO2, i.e., Ci/Ca and intrinsic water‐use efficiency, iWUE) and growth responses (tree‐ring width) of Himalayan fir (Abies spectabilis) trees in response to warming, drying, and CO2 rise. Our study was conducted along elevational gradients in a dry and a wet region in the central Himalaya. We combined dendrochronology and stable carbon isotopes (δ13C) to quantify long‐term trends in Ci/Ca ratio and iWUE (δ13C‐derived), growth (mixed‐effects models), and evaluate climate sensitivity (correlations). We found that iWUE increased over time at all elevations, with stronger increase in the dry region. Climate–growth relations showed growth‐limiting effects of spring moisture (dry region) and summer temperature (wet region), and negative effects of temperature (dry region). We found negative growth trends at lower elevations (dry and wet regions), suggesting that continental‐scale warming and regional drying reduced tree growth. This interpretation is supported by δ13C‐derived long‐term physiological responses, which are consistent with responses to reduced moisture and increased vapor pressure deficit. At high elevations (wet region), we found positive growth trends, suggesting that warming has favored tree growth in regions where temperature most strongly limits growth. At lower elevations (dry and wet regions), the positive effects of CO2 rise did not mitigate the negative effects of warming and drying on tree growth. Our results raise concerns on the productivity of Himalayan fir forests at low and middle (<3,300 m) elevations as climate change progresses.  相似文献   

14.
Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand‐level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear‐cut sites. Relative to a conifer site, a slight local cooling of ?0.13 °C at a deciduous site and ?0.25 °C at a clear‐cut site were observed over a 6‐year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long‐term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business‐as‐usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned ?8 to ?159 Tg‐CO2‐eq., depending on whether near‐term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately ?20 to ?300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon‐only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a tool to mitigate global warming.  相似文献   

15.
Abstract This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ~0.8°C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4–2.0°C by 2030 (relative to 1990) and 1.0–6.0°C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Niño Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover. Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO2 has not been incorporated into most modelling studies. Elevated CO2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as bioclim consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5–1.0°C of warming. Australia lacks the long‐term datasets and tradition of phenological monitoring that have allowed the detection of climate‐change‐related trends in the Northern Hemisphere. Long‐term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO2 into climatic modelling for vegetation and selecting suitable species as indicators of climate‐induced change.  相似文献   

16.
Although species traits have the potential to disentangle long‐term effects of multiple, potentially confounded drivers in ecosystems, this issue has received very little attention in the literature. We aimed at filling this gap by assessing the relative effects of hydroclimatic and water quality factors on the trait composition of invertebrate assemblages over 30 years in the Middle Loire River (France). Using a priori predictions on the long‐term variation of trait‐based adaptations over the three decades, we evaluated the ability of invertebrate traits to indicate the effects of warming, discharge reduction and water quality improvement. Hydroclimatic and water quality factors contributed to up to 65% of the variation in trait composition. More than 70% of the initial trait response predictions made according to observed long‐term hydroclimatic changes were confirmed. They supported a general climate‐induced trend involving adapted resistance and resilience strategies. A partial confounding effect of water quality improvement acting on trophic processes was also highlighted, indicating that improved water quality management can significantly help to reduce some adverse effects of climate change. This trait‐based approach can have wider implications for investigating long‐term changes driven by multiple, potentially confounded factors, as frequently encountered in the context of global change.  相似文献   

17.
Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.  相似文献   

18.
The debate on emission targets of greenhouse gasses designed to limit global climate change has to take into account the ecological consequences. One of the clearest ecological consequences is shifts in phenology. Linking these shifts to changes in population viability under various greenhouse gasses emission scenarios requires a unifying framework. We propose a box-in-a-box modeling approach that couples population models to phenological change. This approach unifies population modeling with both ecological responses to climate change as well as evolutionary processes. We advocate a mechanistic embedded correlative approach, where the link from genes to population is established using a periodic matrix population model. This periodic model has several major advantages: (1) it can include complex seasonal behaviors allowing an easy link with phenological shifts; (2) it provides the structure of the population at each phase, including the distribution of genotypes and phenotypes, allowing a link with evolutionary processes; and (3) it can incorporate the effect of climate at different time periods. We believe that the way climatologists have approached the problem, using atmosphere–ocean coupled circulation models in which components are gradually included and linked to each other, can provide a valuable example to ecologists. We hope that ecologists will take up this challenge and that our preliminary modeling framework will stimulate research toward a unifying predictive model of the ecological consequences of climate change.  相似文献   

19.
Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon‐dioxide (CO2) and methane (CH4) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single‐step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO2 and CH4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH4–C:CO2–C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient‐limited soils. Stable carbon isotopes of CH4 and CO2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long‐term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH4–C:CO2–C ratios have a larger impact on long‐term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change.  相似文献   

20.
An ecological perspective on methane emissions from northern wetlands   总被引:3,自引:0,他引:3  
Wetlands are significant sources of atmospheric methane, an important radiatively active ‘greenhouse’ gas that accounts for an estimated 12% of total greenhouse warming. Since global climate models predict the greatest temperature and precipitation changes at high latitudes, and as the largest areas of wetland (346 × 106ha) are in the boreal and subarctic regions (40–70°N), recent research has focused on Identifying the factors that control methane emission from northern wetlands. Over the past few years, the database has expanded tremendously, and much progress has been made in understanding the environmental controls on methane emission at small spatial and temporal scales. However, we now need to broaden our understanding of regional differences in methane emission, ecological responses of northern wetlands to climate change, and the effect of other perturbations such as drainage and flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号