首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This work is aimed at understanding how protein structure and conformation regulate activity and allosteric communication in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium. Previous crystallographic and kinetic results suggest that both monovalent cations and a salt bridge between alpha subunit Asp(56) and beta subunit Lys(167) play allosteric roles. Here we show that mutation of either of these salt bridging residues produced deleterious effects that could be repaired by increased temperature in combination with CsCl or with NaCl plus an alpha subunit ligand, alpha-glycerol 3-phosphate. Arrhenius plots of the activity data under these conditions were nonlinear. The same conditions yielded temperature-dependent changes in the equilibrium distribution of enzyme-substrate intermediates and in primary kinetic isotope effects. We correlate the results with a model in which the mutant enzymes are converted by increased temperature from a low activity, "open" conformation to a high activity, "closed" conformation under certain conditions. The allosteric ligand and different monovalent cations affected the equilibrium between the open and closed forms. The results suggest that alpha subunit Asp(56) and beta subunit Lys(167) are not essential for catalysis and for allosteric communication between the alpha and beta subunits but that their mutual interaction is important in stabilization of the active, closed form of the alpha(2)beta(2) complex.  相似文献   

2.
Riera TV  Zheng L  Josephine HR  Min D  Yang W  Hedstrom L 《Biochemistry》2011,50(39):8508-8518
Allosteric activators are generally believed to shift the equilibrium distribution of enzyme conformations to favor a catalytically productive structure; the kinetics of conformational exchange is seldom addressed. Several observations suggested that the usual allosteric mechanism might not apply to the activation of IMP dehydrogenase (IMPDH) by monovalent cations. Therefore, we investigated the mechanism of K(+) activation in IMPDH by delineating the kinetic mechanism in the absence of monovalent cations. Surprisingly, the K(+) dependence of k(cat) derives from the rate of flap closure, which increases by ≥65-fold in the presence of K(+). We performed both alchemical free energy simulations and potential of mean force calculations using the orthogonal space random walk strategy to computationally analyze how K(+) accelerates this conformational change. The simulations recapitulate the preference of IMPDH for K(+), validating the computational models. When K(+) is replaced with a dummy ion, the residues of the K(+) binding site relax into ordered secondary structure, creating a barrier to conformational exchange. K(+) mobilizes these residues by providing alternate interactions for the main chain carbonyls. Potential of mean force calculations indicate that K(+) changes the shape of the energy well, shrinking the reaction coordinate by shifting the closed conformation toward the open state. This work suggests that allosteric regulation can be under kinetic as well as thermodynamic control.  相似文献   

3.
The structure of the I domain of integrin alpha L beta 2 bound to the Ig superfamily ligand ICAM-1 reveals the open ligand binding conformation and the first example of an integrin-IgSF interface. The I domain Mg2+ directly coordinates Glu-34 of ICAM-1, and a dramatic swing of I domain residue Glu-241 enables a critical salt bridge. Liganded and unliganded structures for both high- and intermediate-affinity mutant I domains reveal that ligand binding can induce conformational change in the alpha L I domain and that allosteric signals can convert the closed conformation to intermediate or open conformations without ligand binding. Pulling down on the C-terminal alpha 7 helix with introduced disulfide bonds ratchets the beta 6-alpha 7 loop into three different positions in the closed, intermediate, and open conformations, with a progressive increase in affinity.  相似文献   

4.
The pyridoxal 5'-phosphate-dependent tryptophan synthase alpha2beta2 complex is a paradigmatic protein for substrate channeling and allosteric regulation. The enzymatic activity is modulated by a ligand-mediated equilibrium between open (inactive) and closed (active) conformations of the alpha- and beta-subunit, predominantly involving the mobile alpha loop 6 and the beta-COMM domain that contains beta helix 6. The alpha ligand-triggered intersubunit communication seems to rely on a single hydrogen bond formed between the carbonyl oxygen of betaSer-178 of beta helix 6 and the NH group of alphaGly-181 of alpha loop 6. We investigated whether and to what extent mutations of alphaGly-181 and betaSer-178 affect allosteric regulation by the replacement of betaSer-178 with Pro or Ala and of alphaGly-181 with either Pro to remove the amidic proton that forms the hydrogen bond or Ala, Val, and Phe to analyze the dependence on steric hindrance of the open-closed conformational transition. The alpha and beta activity assays and the equilibrium distribution of beta-subunit catalytic intermediates indicate that mutations do not significantly influence the intersubunit catalytic activation but completely abolish ligand-induced alpha-to beta-subunit signaling, demonstrating distinct pathways for alpha-beta-site communication. Limited proteolysis experiments indicate that the removal of the interaction between betaSer-178 and alphaGly-181 strongly favors the more trypsin-accessible open conformation of the alpha-active site. When the hydrogen bond cannot be formed, the alpha-subunit is unable to attain the closed conformation, and consequently, the allosteric signal is aborted at the subunit interface.  相似文献   

5.
In the crystal structure of mitochondrial F1-ATPase, two beta subunits with a bound Mg-nucleotide are in "closed" conformations, whereas the third beta subunit without bound nucleotide is in an "open" conformation. In this "CCO" (beta-closed beta-closed beta-open) conformational state, Ile-390s of the two closed beta subunits, even though they are separated by an intervening alpha subunit, have a direct contact. We replaced the equivalent Ile of the alpha3beta3gamma subcomplex of thermophilic F1-ATPase with Cys and observed the formation of the beta-beta cross-link through a disulfide bond. The analysis of conditions required for the cross-link formation indicates that: (i) F1-ATPase takes the CCO conformation when two catalytic sites are filled with Mg-nucleotide, (ii) intermediate(s) with the CCO conformation are generated during catalytic cycle, (iii) the Mg-ADP inhibited form is in the CCO conformation, and (iv) F1-ATPase dwells in conformational state(s) other than CCO when only one (or none) of catalytic sites is filled by Mg-nucleotide or when catalytic sites are filled by Mg2+-free nucleotide. The alpha3beta3gamma subcomplex containing the beta-beta cross-link retained the activity of uni-site catalysis but lost that of multiple catalytic turnover, suggesting that open-closed transition of beta subunits is required for the rotation of gamma subunit but not for hydrolysis of a single ATP.  相似文献   

6.
Human class I beta 3 beta 3 is one of the alcohol dehydrogenase dimers that catalyzes the reversible oxidation of ethanol. The beta 3 subunit has a Cys substitution for Arg-369 (beta 369C) in the coenzyme-binding site of the beta1 subunit. Kinetic studies have demonstrated that this natural mutation in the coenzyme-binding site decreases affinity for NAD+ and NADH. Structural studies suggest that the enzyme isomerizes from an open to closed form with coenzyme binding. However, the extent to which this isomerization limits catalysis is not known. In this study, stopped-flow kinetics were used from pH 6 to 9 with recombinant beta 369C to evaluate rate-limiting steps in coenzyme association and catalysis. Association rates of NADH approached an apparent zero-order rate with increasing NADH concentrations at pH 7.5 (42 +/- 1 s-1). This observation is consistent with an NADH-induced isomerization of the enzyme from an open to closed conformation. The pH dependence of apparent zero-order rate constants fit best a model in which a single ionization limits diminishing rates (pKa = 7.2 +/- 0.1), and coincided with Vmax values for acetaldehyde reduction. This indicates that NADH-induced isomerization to a closed conformation may be rate-limiting for acetaldehyde reduction. The pH dependence of equilibrium NADH-binding constants fits best a model in which a single ionization leads to a loss in NADH affinity (pKa = 8.1 +/- 0. 2). Rate constants for isomerization from a closed to open conformation were also calculated, and these values coincided with Vmax for ethanol oxidation above pH 7.5. This suggests that NADH-induced isomerization of beta 369C from a closed to open conformation is rate-limiting for ethanol oxidation above pH 7.5.  相似文献   

7.
Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 A resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the alpha-helical class I terpene synthase fold with the active site in the "open", solvent-exposed conformation. Intriguingly, the 2.15 A resolution crystal structure of the complex with Mg2+3-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the "closed" conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition from the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved alpha-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.  相似文献   

8.
A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non‐polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild‐type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate‐analog bound conformation and the third hinge angle is intermediate to the other two. The active‐site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active‐site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active‐site conformations.  相似文献   

9.
The tryptophan intrinsic fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers was examined at different temperatures. Absorption and emission maxima occur at 277 and 332 nm, irrespective of temperature or lipid:protein ratio even if there are indications (from fluorescence quenching) of protein conformational changes as a function of lipid:protein ratio. Low values of Trp fluorescence quantum yield in complex III (0.008-0.010) are probably due to the neighborhood of the heme groups. The temperature-dependent decrease of fluorescence intensity is nonlinear; the corresponding Arrhenius plots show "breaks" or discontinuities that could be interpreted as thermally dependent changes in protein conformation. However, no temperature-dependent changes in fluorescence quenching have been observed that may be related to protein conformational changes. In addition, Arrhenius plots of the fluorescence intensity of simple molecules, such as Trp or 1-anilino-8-naphthalene sulfonate in the presence of aqueous phospholipid dispersions, also show breaks in the same temperature range. Stern-Volmer plots of acrylamide and iodide quenching were also nonlinear, indicating large differences in quenching constants for the various tryptophanyl residues. The quenching results also suggest that, at high lipid:protein ratios, the microviscosity of the protein matrix is higher than that in lipid-poor systems. Comparison of quenching efficiencies of iodide and acrylamide suggest that no significant fraction of the fluorophores occurs in the neighborhood of charged residues.  相似文献   

10.
Escherichia coli glycerol kinase (GK) displays "half-of-the-sites" reactivity toward ATP and allosteric regulation by fructose 1, 6-bisphosphate (FBP), which has been shown to promote dimer-tetramer assembly and to inhibit only tetramers. To probe the role of tetramer assembly, a mutation (Ser58-->Trp) was designed to sterically block formation of the dimer-dimer interface near the FBP binding site [Ormo, M., Bystrom, C., and Remington, S. J. (1998) Biochemistry 37, 16565-16572]. The substitution did not substantially change the Michaelis constants or alter allosteric regulation of GK by a second effector, the phosphocarrier protein IIAGlc; however, it eliminated FBP inhibition. Crystal structures of GK in complex with different nontransferable ATP analogues and glycerol revealed an asymmetric dimer with one subunit adopting an open conformation and the other adopting the closed conformation found in previously determined structures. The conformational difference is produced by a approximately 6.0 degrees rigid-body rotation of the N-terminal domain with respect to the C-terminal domain, similar to that observed for hexokinase and actin, members of the same ATPase superfamily. Two of the ATP analogues bound in nonproductive conformations in both subunits. However, beta, gamma-difluoromethyleneadenosine 5'-triphosphate (AMP-PCF2P), a potent inhibitor of GK, bound nonproductively in the closed subunit and in a putative productive conformation in the open subunit, with the gamma-phosphate placed for in-line transfer to glycerol. This asymmetry is consistent with "half-of-the-sites" reactivity and suggests that the inhibition of GK by FBP is due to restriction of domain motion.  相似文献   

11.
Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.  相似文献   

12.
Weber-Ban E  Hur O  Bagwell C  Banik U  Yang LH  Miles EW  Dunn MF 《Biochemistry》2001,40(12):3497-3511
The tryptophan synthase bienzyme complex is the most extensively documented example of substrate channeling in which the oligomeric unit has been described at near atomic resolution. Transfer of the common metabolite, indole, between the alpha- and the beta-sites occurs by diffusion along a 25-A-long interconnecting tunnel within each alphabeta-dimeric unit of the alpha(2)beta(2) oligomer. The control of metabolite transfer involves allosteric interactions that trigger the switching of alphabeta-dimeric units between open and closed conformations and between catalytic states of low and high activity. This allosteric signaling is triggered by covalent transformations at the beta-site and ligand binding to the alpha-site. The signals are transmitted between sites via a scaffolding of structural elements that includes a monovalent cation (MVC) binding site and salt bridging interactions of betaLys 167 with betaAsp 305 or alphaAsp 56. Through the combined strategies of site-directed mutations of these amino acid residues and cation substitutions at the MVC site, this work examines the interrelationship of the MVC site and the alternative salt bridges formed between Lys beta167 with Asp beta305 or Asp alpha56 to the regulation of channeling. These experiments show that both the binding of a MVC and the formation of the Lys beta167-Asp alpha56 salt bridge are important to the transmission of allosteric signals between the sites, whereas, the salt bridge between betaK167 and betaD305 appears to be only of minor significance to catalysis and allosteric regulation. The mechanistic implications of these findings both for substrate channeling and for catalysis are discussed.  相似文献   

13.
Y X Fan  P McPhie  E W Miles 《Biochemistry》1999,38(24):7881-7890
To characterize the conformational transitions that regulate the activity and specificity of the tryptophan synthase alpha 2 beta 2 complex, we have determined some effects of low concentrations of guanidine hydrochloride (GuHCl) and of urea on functional properties. We report the novel finding that GuHCl at low concentrations (0. 02-0.08 M) is a cation activator of the tryptophan synthase alpha 2 beta 2 complex. Molecular modeling studies show that GuH+ could bind at a previously identified cation binding site in the tryptophan synthase beta subunit. Addition of increasing concentrations of GuHCl has strikingly different effects on the rates of different reactions with L-serine or beta-chloro-L-alanine in the presence or absence of indole. Spectroscopic studies demonstrate that GuHCl alters the equilibrium distribution of pyridoxal 5'-phosphate intermediates formed in reactions at the active site of the beta subunit. Data analysis shows that GuHCl binds preferentially with the conformer of the enzyme that predominates when the aldimine of L-serine is formed and shifts the equilibrium in favor of this conformer. These results provide evidence that GuHCl exerts dual effects on tryptophan synthase as a cation, stimulating activity, and as a chaotropic agent, altering the distribution of conformational states that exhibit different reaction specificities. Our finding that the nonionic urea stabilizes the aldimine of L-serine in the presence, but not in the absence, of NaCl shows that cation binding plays an important role in the conformational transitions that regulate activity and the transmission of allosteric signals between the alpha and beta sites.  相似文献   

14.

Background

Eukaryotic initiation factor 4A (eIF4A) plays a key role in the process of protein translation initiation by facilitating the melting of the 5′ proximal secondary structure of eukaryotic mRNA for ribosomal subunit attachment. It was experimentally postulated that the closed conformation of the eIF4A protein bound by the ATP and RNA substrates is coupled to RNA duplex unwinding to promote protein translation initiation, rather than an open conformation in the absence of ATP and RNA substrates. However, the allosteric process of eIF4A from the open to closed state induced by the ATP and RNA substrates are not yet fully understood.

Methodology

In the present work, we constructed a series of diplex and ternary models of the eIF4A protein bound by the ATP and RNA substrates to carry out molecular dynamics simulations, free energy calculations and conformation analysis and explore the allosteric properties of eIF4A.

Results

The results showed that the eIF4A protein completes the conformational transition from the open to closed state via two allosteric processes of ATP binding followed by RNA and vice versa. Based on cooperative allosteric network analysis, the ATP binding to the eIF4A protein mainly caused the relative rotation of two domains, while the RNA binding caused the proximity of two domains via the migration of RNA bases in the presence of ATP. The cooperative binding of ATP and RNA for the eIF4A protein plays a key role in the allosteric transition.  相似文献   

15.
The ribose-binding protein (RBP) is a sugar-binding bacterial periplasmic protein whose function is associated with a large allosteric conformational change from an open to a closed conformation upon binding to ribose. The crystal structures of RBP in open and closed conformations have been solved. It has been hypothesized that the open and closed conformations exist in a dynamic equilibrium in solution, and that sugar binding shifts the population from open conformations to closed conformations. Here, we study by computer simulations the thermodynamic changes that accompany this conformational change, and model the structural changes that accompany the allosteric transition, using umbrella sampling molecular dynamics and the weighted histogram analysis method. The open state is comprised of a diverse ensemble of conformations; the open ribose-free X-ray crystal conformations being representative of this ensemble. The unligated open form of RBP is stabilized by conformational entropy. The simulations predict detectable populations of closed ribose-free conformations in solution. Additional interdomain hydrogen bonds stabilize this state. The predicted shift in equilibrium from the open to the closed state on binding to ribose is in agreement with experiments. This is driven by the energetic stabilization of the closed conformation due to ribose-protein interactions. We also observe a significant population of a hitherto unobserved ribose-bound partially open state. We believe that this state is the one that has been suggested to play a role in the transfer of ribose to the membrane-bound permease complex.  相似文献   

16.
The effect of hydrostatic pressure on the tryptophan (Trp) synthase alpha2beta2 complex from Salmonella typhimurium has been investigated. Trp synthase has been shown previously to exhibit low-activity (open) and high-activity (closed) conformations. The equilibrium between the open and closed conformations of Trp synthase has been found to be affected by a wide range of variables, including alpha-subunit ligands, monovalent cations, organic solvents, pH, and temperature. The absorption spectrum of the Trp synthase-L-Ser complex shows an increase in absorption of the 423 nm band of the external aldimine, which is a characteristic of the open conformation, as hydrostatic pressure is increased from 1 to 2000 bar. The deltaV(o) and K(o) for the equilibrium between the closed and open conformations of the Trp synthase-L-Ser complex are -126 mL/mol and 0.12 for the Na+ form and -171 mL/mol and 2.3 x 10(-4) for the NH4+ form. When the Trp synthase-L-Ser complex is subjected to pressure jumps of 100-400 bar, relaxations are observed, exhibiting an increase in fluorescence emission at wavelengths greater than 455 nm, with 405 nm excitation. The relaxation to the new equilibrium position requires two exponentials to fit the data in the presence of 0.1 M Na+ and three exponentials to obtain a reasonable fit in the absence of cations and with 0.1 M NH4+. Fluorescence emission at 325 nm, with excitation at 280 nm, also increases when the Trp synthase-L-Ser complex is subjected to pressure jump. These data demonstrate that the open conformation of Trp synthase is favored by higher pressure. Thus, the open conformation has a smaller apparent net system volume than the closed conformation. We estimate that there are 35-47 more waters in the solvation shell of the open conformation than in that of the closed conformation.  相似文献   

17.
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

18.
To couple the energy present in the electrochemical proton gradient, established across the mitochondrial membrane by the respiratory chain, to the formation of ATP from ADP and Pi, ATP-synthase goes through a sequence of coordinated conformational changes of its major subunits (alpha, beta). These changes are induced by the rotation of the gamma subunit driven by the translocation of protons through the c subunit of the membrane portion of the enzyme. During this process, the F1-portion of the ATP-synthase adopts at least two major conformations depending on the occupancy of the beta subunits: one with two nucleotides, the other with three. In the two-nucleotide structure, the empty beta subunit adopts an open conformation that is highly different from the other conformations of beta subunits: tight, loose and closed. The three-dimensional structures of the F1-ATPase in each of these two major conformations provide a framework for understanding the mechanism of energy coupling by the enzyme. The energetics associated with two different models of the reaction steps, analysed using molecular dynamics calculations, show that three-nucleotide intermediates do not occur in configurations with an open beta subunit; instead, they are stabilized by completing a jaw-like motion that closes the beta subunit around the nucleotide. Consequently, the energy driven, major conformational change takes place with the beta subunits in the tight, loose and closed conformation.  相似文献   

19.
Agonist-induced conformational changes in the ligand-binding domains (LBD) of glutamate receptor ion channels provide the driving force for molecular rearrangements that mediate channel opening and subsequent desensitization. The resulting regulated transmembrane ion fluxes form the basis for most excitatory neuronal signaling in the brain. Crystallographic analysis of the GluR2 LBD core has revealed a ligand-binding cleft located between two lobes. Channel antagonists stabilize an open cleft, whereas agonists stabilize a closed cleft. The crystal structure of the apo form is similar to the antagonist-bound, open state. To understand the conformational behavior of the LBD in the absence of crystal lattice constraints, and thus better to appreciate the thermodynamic constraints on ligand binding, we have undertaken a solution x-ray scattering study using two different constructs encoding either the core or an extended LBD. In agreement with the GluR2 crystal structures, the LBD is more compact in the presence of agonist than it is in the presence of antagonist. However, the time-averaged conformation of the ligand-free core in solution is intermediate between the open, antagonist-bound state and the closed, agonist-bound state, suggesting a conformational equilibrium. Addition of peptide moieties that connect the core domain to the other functional domains in each channel subunit appears to constrain the conformational equilibrium in favor of the open state.  相似文献   

20.
The integrin lymphocyte function-associated antigen-1 (alpha(L)beta(2)), which is known for its ability to mediate firm adhesion and migration, can also contribute to tethering and rolling in shear flow. The alpha(L) I domain can be mutationally locked with disulfide bonds into two distinct conformations, open and closed, which have high and low affinity for the ligand intercellular adhesion molecule 1 (ICAM-1), respectively. The wild type I domain exists primarily in the lower energy closed conformation. We have measured for the first time the effect of conformational change on adhesive behavior in shear flow. We show that wild type and locked open I domains, expressed in alpha(L)beta(2) heterodimers or as isolated domains on the cell surface, mediate rolling adhesion and firm adhesion, respectively. alpha(L)beta(2) is thus poised for the conversion of rolling to firm adhesion upon integrin activation in vivo. Isolated I domains are surprisingly more effective than alpha(L)beta(2) in interactions in shear flow, which may in part be a consequence of the presence of alpha(L)beta(2) in a bent conformation. Furthermore, the force exerted on the C-terminal alpha-helix appears to stabilize the open conformation of the wild type isolated I domain and contribute to its robustness in supporting rolling. An allosteric small molecule antagonist of alpha(L)beta(2) inhibits both rolling adhesion and firm adhesion, which has important implications for its mode of action in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号