首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A possibility of exogenous NADH oxidation via the external pathway has been shown on homogenates and isolated liver cells of the lamprey Lampetra fluviatilis in the presence of rotenone and antimycin A. The homogenates were incubated in isotonic and hypotonic sucrose media, while cells, in isotonic salt medium. At incubating the tissue preparations in isotonic media, digitonin was used to enhance membrane permeability to NADH and cytochrome c. In homogenates, the maximal rate of NADH oxidation via the external pathway in the presence of cytochrome c and digitonin was 5.3 nmol O2/min/10 mg wet weight. This value in the cells amounted to 12.6, while without addition of exogenous NADH and cytochrome c, to 11.0 nmol O2/min/10 million cells. Cyanide inhibited completely the NADH oxidation via the external pathway both in homogenates and in cells. The intact lamprey hepatocytes, unlike homogenates, are suggested to contain sufficient concentrations of cytochrome c and extramitochondrial NADH to provide maximal NADH oxidation rate in mitochondria through external pathway. This allows thinking that potential possibilities of NADH oxidation via the external pathway in Cyclostomata and mammals are qualitatively and quantitatively close.  相似文献   

2.
We have studied changes in plasma membrane NAD(P)H:quinone oxidoreductases of HL-60 cells under serum withdrawal conditions, as a model to analyze cell responses to oxidative stress. Highly enriched plasma membrane fractions were obtained from cell homogenates. A major part of NADH-quinone oxidoreductase in the plasma membrane was insensitive to micromolar concentrations of dicumarol, a specific inhibitor of the NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), and only a minor portion was characterized as DT-diaphorase. An enzyme with properties of a cytochrome b 5 reductase accounted for most dicumarol-resistant quinone reductase activity in HL-60 plasma membranes. The enzyme used mainly NADH as donor, it reduced coenzyme Q0 through a one-electron mechanism with generation of superoxide, and its inhibition profile by p-hydroxymercuribenzoate was similar to that of authentic cytochrome b 5 reductase. Both NQO1 and a novel dicumarol-insensitive quinone reductase that was not accounted by a cytochrome b 5 reductase were significantly increased in plasma membranes after serum deprivation, showing a peak at 32 h of treatment. The reductase was specific for NADH, did not generate superoxide during quinone reduction, and was significantly resistant to p-hydroxymercuribenzoate. The function of this novel quinone reductase remains to be elucidated whereas dicumarol inhibition of NQO1 strongly potentiated growth arrest and decreased viability of HL-60 cells in the absence of serum. Our results demonstrate that upregulation of two-electron quinone reductases at the plasma membrane is a mechanism evoked by cells for defense against oxidative stress caused by serum withdrawal.  相似文献   

3.
Summary The oxidation of hydrogen and NADH by membrane fractions of two autotrophically grown hydrogen bacteria,Pseudomonas facilis and strain14 g, both lacking a hydrogen dehydrogenase, was studied by difference-spectrophotometric and manometric methods. The spectrophotometric data did not support the existence of two separate electron transport pathways for both the substrates. However, from the effect of rotenone, antimycin A, BAL, and HQNO on the oxygen uptake rate with H2 or NADH as substrates, separate pathways could be proposed: in strain14 g at least tocytochrome b and inP. facilis at least tocytochrome c.  相似文献   

4.
The reactivity between different cytochromes c purified from Pseudomonas aeruginosa cells grown aerobically in the absence of nitrate and isolated cytochromes co and baa 3 was determined. The P. aeruginosa cytochrome co reacted most rapidly with the membrane-bound cytochrome c-551 among three c-type cytochromes analyzed, whereas the cytochrome baa 3 reacted best with the membrane-bound cytochrome c-555. The results indicated that two terminal electron transfer systems are present in aerobic P. aeruginosa: one contains the cytochrome c-551 and cytochrome co, and the other contains the cytochrome c-555 and cytochrome baa 3.  相似文献   

5.
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on monocyte, we infected human U937 cells with the P. aeruginosa strain in vitro. To explore the expression of Bcl-2 and Bax as well as caspase-3/9 activation in the apoptosis of human U937 cells induced by P. aeruginosa, Hoechst 33258 staining and Giemsa staining as well as Flow cytometry analysis were used to determine the rate of apoptosis, and the expressions of Bcl-2 and Bax were assayed by RT-PCR and Western blotting respectively. Bax protein conformation change was assayed by immunoprecipitation. Cytochrome c release was measured by Western blotting. Moreover, exposure of U937 cells to P. aeruginosa measured caspase-3/9 activity. It was found that the apoptosis of human U937 cells could be induced by Pseudomonas aeruginosa in a dose- and time-dependent manner. Also, there were a tendency of alterations with an increased expression level of Bax and a reduced expression level of Bcl-2, increased levels of cytochrome c release, and also with an increased activation of caspase-3/9 and Bax protein conformation change. For the evaluation of the role of caspases, caspase-3/9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK respectively were used. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked P. aeruginosa-induced U937 apoptosis. It is concluded that P. aeruginosa can induce apoptosis with an up-regulated expression of Bax and a down-regulated expression of Bcl-2, which resulted in increased levels of cytochrome c release and increased caspase-3 and -9 in human U937 cells.  相似文献   

6.
The respiratory rates of Paracoccus denitrificans cells, membrane fragments, and detergent-solubilized, ammonium sulfate-precipitated membrane fractions were measured with NADH and ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine as the substrates. It was found that the turnover numbers for cytochrome c were the same in the three preparations giving maximum values of approximately 300 s?1 at 100% reduction of cytochrome c. NADH was rapidly oxidized in the detergent-solubilized, ammonium sulfate-precipitated membrane fraction which contained tightly bound cytochrome c. It is suggested that tight binding of cytochrome c in P. denitrificans does not impair its electron transport activity. The respiration of intact cells was dependent on the redox state of cytochrome c over a wide range of cytochrome c reduction, on the intracellular [ATP]/[ADP][Pi] and on the pH of the suspending medium. A conclusion is drawn that the basic principle(s) underlying regulation of cellular respiration is the same in the prokaryotic P. denitrificans and in mitochondria-containing eukaryotic organisms.  相似文献   

7.
Summary The light-induced formation of NADH by whole cells of Rhodopseudomonas spheroides has been followed fluorimetrically and found to lag slightly behind cytochrome c oxidation. The uncoupler, FCCP1, abolished NADH formation which was also inhibited by HOQNO1. Electron flow from NADH to oxygen or cytochrome c was inhibited in chromatophores of R. spheroides by HOQNO, antimycin A and rotenone. From the known properties of the inhibitors used it is deduced that NADH formation in the light is dependent upon reversed electron flow. No light-induced formation of NAD(P)H by whole cells or chromatophores of Chlorobium thiosulfatophilum was detected either fluorimetrically or by extraction followed by enzymic assay although cytochrome c oxidation was extensive in whole cells. Extracts of C. thiosulfatophilum catalysed the rapid reduction of endogenous or mammalian cytochrome c; unlike R. spheroides this activity was found almost entirely in the soluble fraction and was insensitive to HOQNO, antimycin A and rotenone. No cytochrome b was detected in C. thiosulfatophilum by difference spectroscopy of pyridine haemochromes of acetone powders. The K m for NADH of NADH-cytochrome c reductase in both organisms was about 3 mol; the reductase was inhibited by NAD. The rates of NADPH-cytochrome c reductase in R. spheroides particles were too low for K m determination; for C. thiosulfatophilum particles the K m for NADPH was about 300 mol. The addition of NADH to soluble extracts of either organism caused the reduction of endogenous flavin that was reoxidised by ferricyanide. The NADH-cytochrome c reductase of C. thiosulfatophilum was not separated from ferredoxin on a DEAE column. It is concluded that in C. thiosulfatophilum the formation of NADH in an energy-linked reaction is unlikely; the possibility of a cyclic electron flow involving chlorophyll, ferredoxin, flavoprotein and cytochrome c is discussed.  相似文献   

8.
Pseudomonas aeruginosa is a pathogenic bacterium that has been thoroughly investigated since the 19th century and is generally regarded as a freshwater or terrestrial organism. In 1995, it was reported that the OprP porin, an outer membrane protein corresponding to that of this bacterium, was widely distributed as a dissolved component in seawater. This finding led us to investigate the presence of P. aeruginosa in marine environments. Both culture-independent and -dependent methods were applied to seawater samples obtained in Tokyo Bay during four cruises. The DVC-FA (direct viable count–fluorescent antibody) technique showed that cells reactive to an antibody against P. aeruginosa were widely present in the bay, i.e., 103 to 104 cells/mL in the inner bay, and 102 to 103 cells/mL at the mouth. Bacterial cells isolated by selective medium were identified by three methods: the presence of oprI and oprL, two outer membrane lipoprotein genes specific to P. aeruginosa; the API20 NE kit; and 16S rDNA sequence analysis. The results confirmed that the majority of isolates from the bay were P. aeruginosa. Immuno-chemical analyses of the seawater results indicate that P. aeruginosa is commonly present in coastal marine environments and sheds OprP.  相似文献   

9.
Hydrogen exchange rates for backbone amide protons of oxidized Pseudomonas aeruginosa cytochrome c-551 (P. aeruginosa cytochrome c) have been measured in the presence of low concentrations of the denaturant guanidine hydrochloride. Analysis of the data has allowed identification of submolecular unfolding units known as foldons. The highest-energy foldon bears similarity to the proposed folding intermediate for P. aeruginosa cytochrome c. Parallels are seen to the foldons of the structurally homologous horse cytochrome c, although the heme axial methionine-bearing loop has greater local stability in P. aeruginosa cytochrome c, in accord with previous folding studies. Regions of low local stability are observed to correspond with regions that interact with redox partners, providing a link between foldon properties and function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
In a previous study (Hughes EE, Gilleland LB, Gilleland HE Jr. [1992] Infect Immun 60:3497–3503), ten synthetic peptides were used to test for surface-exposed antigenic regions located throughout the length of outer membrane protein F of Pseudomonas aeruginosa. An additional nine peptides of 11–21 amino acid residues in length were synthesized. Antisera collected from mice immunized with each of the 19 synthetic peptides conjugated to keyhole limpet hemocyanin were used to determine which of the peptides had elicited antibodies capable of reacting with the surface of whole cells of the various heterologous Fisher-Devlin immunotypes of P. aeruginosa. Cell surface reactivity was measured by an enzyme-linked immunosorbent assay (ELISA) with whole cells of the various immunotypes as the ELISA antigens and by opsonophagocytic uptake assays with the various peptide-directed antisera, immunotype 2 P. aeruginosa cells, and polymorphonuclear leukocytes of human and murine origin. Three peptides located in the carboxy-terminal portion of protein F elicited antibodies with the greatest cell-surface reactivity. Peptide 9 (TDAYNQKLSERRAN), peptide 10 (NATAEGRAINRRVE), and peptide 18 (NEYGVEGGRVNAVG) appear to have sufficient potential for further development as vaccine candidates for immunoprophylaxis against infections caused by P. aeruginosa. A topological model for the arrangement of protein F within the outer membrane of P. aeruginosa is presented.  相似文献   

11.
A rapid identification method of glucose nonfermentative gram-negative rods was established and 320 strains isolated were divided into five groups according to their characteristics in pigmentation, acid from glucose, cytochrome oxidase activity and motility. Further characterization of the strains in each group resulted in the identification that the strains in group I were Pseudomonas aeruginosa, strains in group II, P. aeruginosa and Pseudomonas putida. Achromogenic strains of P. aeruginosa were classified into group III, Pseudomonas maltophilia, Pseudomonas alcaligenes and Alcaligenes faecalis into group IV and Acinetobacter calcoaceticus (Acinetobacter anitratus and Achromobacter lwoffii) in group V. When fluorescent pigment production was taken as a standard, 259 out of 263 chromogenic strains were identified as P. aeruginosa and the remaining four were P. putida. Whereas forty-five achromogenic strains included twenty-four A. calcoaceticus, eight P. aeruginosa, six A. faecalis, five P. maltophilia and two P. alcaligenes. From May 1970 to June 1971, 368 strains of glucose nonfermentative rods were isolated from clinical specimens sent to the Central Laboratories of Tohoku University Hospital and three fourth (286/368) of the isolates were P. aeruginosa  相似文献   

12.
Cytochrome P–450 is found in soluble as well as in particulate fractions of n-alkane-induced cells of Acinetobacter calcoaceticus EB 104 as shown by differential centrifugation and; gelfiltration experiments. It is reduced by NADH in the presence of at least two soluble proteins. Particulate cytochrome P–450 was extracted by Triton X-100 and purified to homogeneity. The 80 fold enrichment resulted in a content of 19.0 nmol cytochrome P-450/mg protein. The maxima of the absolute spectra are 417 nm for the oxidized, 408 nm for the reduced and 448 nm for the CO complex of reduced cytochrome. A ferredoxin, identified by maxima of 415 and 460 nm in the absorption spectrum of the oxidized form and by the occurrence of acid-labile sulfur, as well as a corresponding NADH-dependent ferredoxin reductase were isolated independently from the same bacterial strain. Enzymatic reduction of purified cytochrome P–450 is mediated by these proteins, which are discussed as in vivo components of the cytochrome P–450 system of A. calcoaceticus EB 104.  相似文献   

13.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

14.
A novel catechol-substituted cephalosporin, S-9096, showed potent antibacterial activity against Pseudomonas aeruginosa under both iron-deficient and aerobic conditions. S-9096 and ferric iron formed a chelate complex at the molar ratio of 3 to 1, which could be incorporated into P. aeruginosa cells grown under such conditions. Incorporation decreased when the cells were grown under either iron-sufficient or anaerobic conditions, with a concomitant disappearance of iron-regulated outer membrane proteins that were considered to function as receptors for ferric siderophores. These results indicated that the ferric chelate of S-9096 was incorporated into P. aeruginosa cells via a ferric iron transport pathway, which caused the high antibacterial potency of S-9096. All of the S-9096-resistant mutants that were able to grow even under iron-deficient conditions lacked an iron-regulated outer membrane protein having an apparent molecular mass of 66 kDa, suggesting the role of this protein as a receptor for the ferric chelate of S-9096. Correspondence to: Y. Yamano  相似文献   

15.
There are no earlier reports with successful isolation of plasma membranes from lignin‐forming tissues of conifers. A method to isolate cellular membranes from extracellular lignin‐producing tissue‐cultured cells and developing xylem of Norway spruce was optimized. Modifications to the homogenization buffer were needed to obtain membranes from these phenolics‐rich tissues. Membranes were separated by aqueous polymer two‐phase partitioning. Chlorophyll a determination, marker enzyme assays and western blot analyses using antibodies for each membrane type showed that mitochondrial, chloroplastic and to a certain extent also ER and Golgi membranes were efficiently diminished from the upper phase, but tonoplast and plasma membranes distributed evenly between the upper and lower phases. Redox enzymes present in the partially purified membrane fractions were assayed in order to reveal the origin of H2O2 needed for lignification. The membranes of spruce contained enzymes able to generate superoxide in the presence of NAD(P)H. Besides members of the flavodoxin and flavodoxin‐like family proteins, cytochrome b5, cytochrome P450 and several stress responsive proteins were identified by nitroblue tetrazolium staining of isoelectric focusing gels and by mass spectrometry. Naphthoquinones juglone and menadione increased superoxide production in activity‐stained gels. Some juglone‐activated enzymes were preferentially using NADH. With NADH, menadione activated only some of the enzymes that juglone did, whereas with NADPH the activation patterns were identical. Duroquinone, a benzoquinone, did not affect superoxide production. Superoxide dismutase, ascorbate peroxidase, catalase and an acidic class III peroxidase isoenzyme were detected in partially purified spruce membranes. The possible locations and functions of these enzymes are discussed.  相似文献   

16.
Elastase is a major virulence factor in Pseudomonas aeruginosa that is believed to cause extensive tissue damage during infection in the human host. Elastase is secreted in non-mucoid P. aeruginosa. It is known that secretion of most virulence factors such as elastase, lipase, exotoxin A, etc., in P. aeruginosa is greatly reduced in alginate-secreting mucoid cells isolated from the lungs of cystic fibrosis (CF) patients. We have previously reported that in mucoid P. aeruginosaan intracellular protease cleaves the 16 kDa form of nucleoside diphosphate kinase (Ndk) to a truncated 12 kDa form. This smaller form is membrane associated and has been observed to form complexes with specific proteins to predominantly generate GTP, an important molecule in alginate synthesis. The main aim of this study was to purify and characterize this protease. The protease was purified by hydrophobic interaction chromatography of the crude extract of mucoid P. aeruginosa 8821, a CF isolate. Further analysis using a gelatin containing SDS–polyacrylamide gel detected the presence of a 103 kDa protease, which when boiled, migrated as a 33 kDa protein on a SDS–polyacrylamide gel. The first 10 amino acids from the N-terminus of the 33 kDa protease showed 100% identity to the mature form of elastase. An elastase-negative lasB ::Cm knock-out mutant in the mucoid 8821 background was constructed, and it showed a non-mucoid phenotype. This mutant showed the presence of only the 16 kDa form of Ndk both in the cytoplasm and membrane fractions. We present evidence for the retention of active elastase in the periplasm of mucoid P. aeruginosa and its role in the generation of the 12 kDa form of Ndk. Finally, we demonstrate that elastase, when overproduced in both mucoid and non-mucoid cells, stimulates alginate synthesis. This suggests that the genetic rearrangements that trigger mucoidy in P. aeruginosa also allow retention of elastase in the periplasm in an active oligomeric form that facilitates cleavage of 16 kDa Ndk to its 12 kDa form for the generation of GTP, required for alginate synthesis.  相似文献   

17.
Jasbir Singh 《BBA》1974,333(1):28-36
Pseudomonas aeruginosa cytochrome oxidase, which reduces nitrite and oxygen, is also capable of reducing hydroxylamine to ammonia.The Km for hydroxylamine reduction is 6 · 10?4M compared to 5 · 10?5M for nitrite reduction. NADH, NADPH, reduced P. aeruginosa cytochrome c551, and reduced P. aeruginosa copper protein were ineffective as electron donors for hydroxylamine reduction whereas reduced pyocyanine and methylene blue acted as electron mediators.Hydroxylamine reduction did not require the presence of Mn2+ of FAD and was not inhibited by prolonged dialysis versus sodium diethyldithiocarbamate. Cyanide, nitrite, and CO were very effective inhibitors.Removal of heme d and its reconstitution, as well as inhibition by CO, suggest that the reduction of hydroxylamine, like the reduction of nitrite or oxygen, proceeds via the heme d.  相似文献   

18.

The mutual influences of Pseudomonas aeruginosa PAO1 and Desulfovibrio desulfuricans subsp. desulfuricans (ATCC 29577) on their adhesion to stainless steel were investigated in batch and column experiments. It was found that P. aeruginosa promoted the adhesion of D. desulfuricans under conditions of turbulence, but not under quiescent conditions. The enhancement involved the alignment of most D. desulfuricans along P. aeruginosa cells and was attributed to the additional interaction surface area provided by adhered P. aeruginosa to aligning D. desulfuricans cells. A slightly positive effect of pre-adhered D. desulfuricans on the adhesion of P. aeruginosa was found. Under condition of laminar flow, substantially better adhesion of D. desulfuricans to confluent P. aeruginosa biofilms than to steel was observed. The mutual influences are discussed in terms of more favorable adhesion energies and the influence of changed hydraulic conditions due to the roughness of P. aeruginosa biofilms.  相似文献   

19.
To determine the function of the C-terminal region of Bacillus amyloliquefaciens phage endolysin on Pseudomonas aeruginosa lysis, the permeabilization of the outer membrane of P. aeruginosa was analyzed. Glu-15 to His (E15H) and Thr-32 to Glu (T32E) substitutions were introduced into the Bacillus phage endolysin. Neither E15H nor T32E substitution induced enzymatic and antibacterial activities. These two, Glu-15 and Thr-32, were considered to be the active center of the enzyme. The addition of purified E15H and T32E proteins to P. aeruginosa cells induced the release of periplasmic -lactamase from the cells, indicating that both proteins enhance permeabilization of the outer membrane. However, the addition of E15H and T32E proteins to P. aeruginosa cells did not induce the release of cytoplasmic ATP from the cells. These results indicate that the antibacterial activity of the endolysin requires both the C-terminal enhancement of the permeabilization of the P. aeruginosa outer membrane and N-terminal enzymatic activity.  相似文献   

20.
The effects of culture variables on the specific content and activity of various enzymes of the drug mmetabolizing system were assessed in colon tumor cell line LS174T. The NADH reduced cytochrome b5 (cyt b5)4 spectrum of these cells was similar to rat liver cyt b5. When released from the membrane by trypsin and concentrated, the cyt b5 was found to cross react with rabbit antibody to rat liver cyt b5 and human liver cyt b5. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 µol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b5 and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone showed a consistent, but not always significant increase in the NADPH and NADH cyt c reduction and benzanthracene an increase in the NADH cyt c reducing activity and cyt b5 content. Griseofulvin lowered the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5 mM) caused a significant decrease in the specific activity of all enzymes, as judged by a student's t test, with a p<0.001.Abbreviations cyt b5 cytochrome b5 - cyt c cytochrome c - cyt P450 cytochrome P450 - PB Phenobarbital - HC Hydrocortisone - ALA -Aminolevulinic acid - GRIS Griseofulvin - PENT Pentagastrin - PASS Cell Passage - DMH Dimethylhydrazine - BA Benzanth Acene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号