首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to clarify the substrate specificity of the α-L-mannosidase activity of naringinase (Sigma), the following disaccharides and phenol glycosides were freshly prepared: methyl 2-O-(α-L-mannopyranosyl)­β-D-glucoside (1), methyl 3-O-(α-L-mannopyranosyl)-α-D-glucoside (2), methyl 4-O-(α-L-mannopyranosyl)-α-D-glucoside (3), methyl 5-O-(α-L-mannopyranosyl)-β-D-glucoside (4), methyl 6-O-(α-L-mannopyranosyl)-α-D­glucoside (5), 6-O-(α-L-mannpyranosyl)-D-galactose (6), p-nitrophenyl α-L-mannoside (7), and 4-methyl umbelliferone α-L-mannoside (8).These compounds, except for 3 and 5, were hydrolyzed with naringinase.  相似文献   

2.
From the methanolysis product of the antibiotic YA–56 X (Zorbamycin) and Y belonging to phleomycin-bleomycin group, two monosaccharides and one disaccharide were isolated as their fully acetylated derivatives. The structures of these compounds were determined to be methyl 2,3,4-tri-O-acetyl-6-deoxy-β-L-gulopyranoside, methyl 2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranoside and methyl 2-O-(2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranosyl)-3,4-O-0-acetyl-6-deoxy-β-L-“gulopyranoside,

Based on these results, it was concluded that 2-O-(3-O-carbamoyl-α-D-mannosyl)-6-deoxy-L-gulose is present as a sugar moiety of the antibiotic YA–56.  相似文献   

3.
By screening 46 strains of Actinomycetes for their ability to hydrolyze arabinan, 16 strains were found to have α-l-arabinofuranosidase activity, and Streptomyces purpurascens IFO 3389 was selected as the most promising of the sixteen. An α-l-arabinofuranosidase [EC 3.2.1.55] has been highly purified from the culture fluid of this organism grown on beet arabinan as the carbon source. The molecular weight of the native enzyme was determined to be 495, 000 by gel filtration and that of the subunit to be 62,000 by SDS polyacrylamide gel electrophoresis. The pI value was 3.9. The purified enzyme was active on p-nitrophenyl α-l-arabinofuranoside and arabino-oligomers, and inactive on arabinan, arabinoxylan and arabinogalactan. The optimum pH was 6.5. The enzyme was inhibited by Hg2+, Ag+ and l-arabino-γ-lactone. The values of Km and Vmax for p-nitrophenyl α-l-arabinofuranoside were determined to be 8.2 × 10?5 m and 89.3 μmol per min per mg of protein, respectively.  相似文献   

4.
An extracellular polysaccharide elaborated by a new species of Beijerinckia indica, named TX-1, was composed of D-glucose, L-fucose, D-glycero-D-manno-heptose, and D-glucuronic acid in a molar ratio of 5.0:1.0:2.0:0.9, in addition to 16.2% of the acetyl group. Among the polysaccharides of the Beijerinckia species, the present polysaccharide might be the first acidic type having an L-fucose residue. A methylation analysis, Smith degradation study and fragmentation analysis show that this polysaccharide consisted of non-reducing terminal D-glucose, O-4 substituted D-glucose, O-2 substituted D-glycero-D-manno-heptose, O-4 substituted D-glucuronic acid, O-3 and O-4 substituted D-glucose, and O-3 substituted L-fucose residues. A D-glucuronic acid residue was linked to the O-3 position of the L-fucose residue by an α-glycosidic linkage. Most of the D-glucose residues in the backbone chain were substituted at the O-3 position, with the side chain having non-reducing terminal D-glucose residues. It is suggested by the reaction with Con A that the anomeric configuration of the terminal D-glucose residues was β.  相似文献   

5.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

6.
An extracellular polysaccharide (EPS) was recovered and purified from the culture fluid of a sheathed bacterium, Sphaerotilus natans. Glucose, rhamnose, and aldobiouronic acid were detected in the acid hydrolysate of EPS by thin-layer chromatography (TLC). The aldobiouronic acid was found to be composed of glucuronic acid and rhamnose by TLC and gas-liquid chromatography analyses of the corresponding neutral disaccharide. The structure of EPS was identified by methylation linkage analysis and nuclear magnetic resonance. Additionally, partial acid hydrolysates of EPS were prepared and put through fast atom bombardment-mass spectrometry to determine the sugar sequence of EPS. The resulting data showed that EPS produced by S. natans is a new gellan-like polysaccharide constructed from a tetrasaccharide repeating unit, as shown below.

→4)-α-D-Glcp-(1→2)-β-D-GlcAp-(1→2)-α-L-Rhap- (1→3)-β-L-Rhap-(1→  相似文献   

7.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

8.
For the specific detection of α-L-arabinofuranosidase (α-L-AFase) activity in isoelectric focused gels, 6-bromo-2-naphthyl-α-L-arabino-furanoside (BN-α-L-Araf) was synthesized by the condensation of 2, 3, 5-tri-O-benzoyl-α-L-arabinofuranosyl bromide and 6-bromo-2-naphthol. α-L-AFase activity had been detected in a gel after isoelectric focusing by using the synthesized BN-α-L-Araf as a substrate, and the detection for the enzyme activity was more sensitive than protein detection with Coomassie Brilliant Blue R-250.  相似文献   

9.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

10.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

11.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

12.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

13.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

14.
Egg white lysozyme was found to catalyze the transfer of N-acetylglucosamine to cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→} (CTS). Structural analysis showed that the transfer product was3-O-β-N-acetylglucosaminyl CTS, cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-[β-GlcNAc-(1→3)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→}. This branched saccharide is anticipated to be a model compound of the sugar chains of glycoproteins.  相似文献   

15.
Seven optical active 2-benzylamino alcohols were synthesized by reduction of N-benzoyl derivatives of L-alanine, L-valine, L-leucine, L-phenylalanine, L-aspartic acid, L-glutamic acid and L-lysine and applied for the resolution of (±)-trans-chrysanthemic acid. d-trans-Chrys-anthemic acid was obtained by resolution via the salts of 2-benzylamino alcohols derived from L-valine and L-leucine, while (?)-trans-chrysanthemic acid was prepared through the salts of the amino alcohols derived from L-alanine and L-phenylalanine.  相似文献   

16.
Regioselective deacetylations of nine glycosides catalyzed by acetyl xylan esterase from Bacillus pumilus have been studied. The glycosides were methyl and benzyl glycosides of the tetraacetates of α-D-glucopyranose, α-D-galactopyranose and α-D-mannopyranose, and the methyl glycosides of tetra-O-acetyl-β-D-glucopyranose, tetra-O-acetyl-β-D-galactopyranose and tetra-O-acetyl-α-D-glucopyranose. The kinetics of successive deacetylations was monitored by GLC and 21 sugar acetates have been identified.  相似文献   

17.
The glycoside composition and sequence of an extracellular polysaccharide flocculant of Klebsiella pneumoniae H12 was analyzed. GC and HPLC analysis of the acid-hydrolysate identified its constituent monosaccharides as D-Glc, D-Man, D-Gal, and D-GlcA in an approximate molar ratio of 3.9:1.0:2.3:3.6. To analyze the glycoside sequence, the polysaccharide was partially hydrolyzed by acid and enzyme treatment. GC, HPLC, TLC, MALDI-TOF/MS, and 1H- and 13C- NMR spectroscopy characterized the obtained oligosaccharides.

The results clarified the partial structure of H12 polysaccharide as a linear polymer of a unit of pentasaccharide with a side chain of one D-GlcA to D-Glc moiety (see below). Although the existence of other sequences or other constituent glycosides could not be fully excluded, H12 polysaccharide must be a novel types as such a complicated unit for a polymer has not so far been reported. The partial structure of a H12 polysaccharide flocculant is also discussed in this report.

→4)- α-D-Glcp-(1→2)-α-D-Manp-(1→3)-4,6-Pyr-β-D- 3 Galp-(1→4)-β-D-Galp-(1→ ↓

1 β-D-GlcpA  相似文献   

18.

Arabinosylation of some 4-amino- and 4-arylideneamino-5-(pyridin-3-yl)-2,4-dihydro-[1,2,4]-triazole-3-thiones with 2,3,4-tri-O-acetyl-β-L-arabinopyranosyl bromide led to an efficient synthetic approach to the corresponding N-and S-α-L-arabinopyranosides. Structure assignment of these two regiosiomers was based on chemical and spectroscopic evidences. Antimicrobial activities of two selected regioisomeric N-and S-α-L-arabinopyranosides were compared. The N-α-L-arabinopyranoside showed higher inhibitory effect than its regioisomeric S-α-L-arabinopyranoside against Aspergillus fumigatus, Penicillium italicum, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

19.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

20.
The sheath of Sphaerotilus natans is composed of cysteine-rich peptide and polysaccharide moieties. The polysaccharide was prepared by treating the sheath with hydrazine, and was determined to be a mucopolysaccharide containing β-D-GlcA, β-D-Glc, α-D-GalN, and β-D-GalN. To elucidate the structure of the peptide, the sheath was labeled with a thiol-selective fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Enantiomeric determination of the S-derivatized Cys in the fluorescent sheath suggested that it contained L-Cys mainly. Fluorescent cysteinylglycine was detected in the partial acid hydrolysate of the fluorescent sheath. The sheath-degrading enzyme secreted by Paenibacillus koleovorans produced a fluorescent disaccharide-dipeptide composed of GalN, Gly, and N-acetylated Cys from the fluorescent sheath. The disaccharide and dipeptide moieties were found to be connected by an amide bond. Based on these results, the sheath was deduced to be formed by association of a mucopolysaccharide modified with N-acetyl-L-cysteinylglycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号