首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.  相似文献   

2.
Molecular weights of extracellular chitinases from wild-type B-10 (62, 54, 43, 38, and 21 kDa) and mutant M-1 strains of Serratia marcescens (62, 52, 43, 38, and 21 kDa) were estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. In the absence of chitin inductors, chitinolytic enzymes were not found in the culture liquid of B-10, whereas M-1 cells produced the chitinase complex (to 470 pU/cell). Crystalline chitin insignificantly stimulated the synthesis of chitinases with molecular weights of 62, 54, and 21 kDa by B-10 (up to 20 pU/cell), but caused oversynthesis of all chitinases by the mutant strain (up to 2600 pU/cell). Colloidal chitin induced the production of chitinases by cells of both strains. Two peaks of chitinolytic activity were observed during cultivation of strains B-10 (350 and 450 pU/cell) and M-1 (2200 and 2400 pU/cell). The first peak of cell productivity was associated with biosynthesis of the chitinase complex. The second peak was related to the synthesis of enzymes with molecular weights of 54, 43, 38, and 21 kDa (B-10) or 43, 38, and 21 kDa (M-1).  相似文献   

3.
Three chitinases, designated gazyumaru latex chitinase (GLx Chi)-A, -B, and -C, were purified from the latex of gazyumaru (Ficus microcarpa). GLx Chi-A,-B, and -C are an acidic class III (33 kDa, pI 4.0), a basic class I (32 kDa, pI 9.3), and a basic class II chitinase (27 kDa, pI > 10) respectively. GLx Chi-A did not exhibit any antifungal activity. At low ionic strength, GLx Chi-C exhibited strong antifungal activity, to a similar extent as GLx Chi-B. The antifungal activity of GLx Chi-C became weaker with increasing ionic strength, whereas that of GLx Chi-B became slightly stronger. GLx Chi-B and -C bound to the fungal cell-walls at low ionic strength, and then GLx Chi-C was dissociated from them by an escalation of ionic strength, but this was not the case for GLx Chi-B. The chitin-binding activity of GLx Chi-B was enhanced by increasing ionic strength. These results suggest that the chitin-binding domain of basic class I chitinase binds to the chitin in fungal cell walls by hydrophobic interaction and assists the antifungal action of the chitinase.  相似文献   

4.
Complementary DNA clones encoding acidic and basic isoforms of tomato chitinases were isolated fromCladosporium fulvum-infected leaves. The clones were sequenced and found to encode the 30 kDa basic intracellular and the 26 and 27 kDa acidic extracellular tomato chitinases previously purified (M.H.A.J. Joostenet al., in preparation). A fourth truncated cDNA which appears to encode an extracellular chitinase with 82% amino acid similarity to the 30 kDa intracellular chitinase was also isolated. Characterization of the clones revealed that the 30 kDa basic intracellular protein is a class I chitinase and that the 26 and 27 kDa acidic extracellular proteins which have 85% peptide sequence similarity are class II chitinases. The characterized cDNA clones represent four from a family of at least six tomato chitinases. Southern blot analysis indicated that, with the exception of the 30 kDa basic intracellular chitinase, the tomato chitinases are encoded by one or two genes. Northern blot analysis showed that the mRNA encoding the 26 kDa acidic extracellular chitinase is induced more rapidly during an incompatibleC. fulvum-tomato interaction than during a compatible interaction. This difference in timing of mRNA induction was not observed for the 30 kDa basic intracellular chitinase.  相似文献   

5.
Molecular weights of extracellular chitinases from wild-type B-10 (62, 54, 43, 38, and 21 kDa) and mutant M-1 strains of Serratia marcescens (62, 52, 43, 38, and 21 kDa) were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the absence of chitin inductors, chitinolytic enzymes were not found in the culture liquid of B-10, while M-10 cells produced the chitinase complex (to 470 pU/cell). Crystalline chitin insignificantly stimulated the synthesis of chitinases with molecular weights of 62, 54, and 21 kDa by B-10 (up to 20 pU/cell), but caused overproduction of all chitinases by the mutant strain (up to 2600 pU/cell). Colloidal chitin induced the production of chitinases by cells of both strains. Two peaks of chitinolytic activity were observed during cultivation of strains B-10 (350 and 450 pU/cell) and M-1 (2200 and 2400 pU/cell). The first peak of cell productivity was associated with biosynthesis of the chitinase complex. The second peak was related to the production of enzymes with molecular weights of 54, 43, 38, and 21 kDa (B-10) or 43, 38, and 21 kDa (M-1).  相似文献   

6.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

7.
Characteristics and antifungal activity of chitinases in Semillon grapes were investigated. Chitinases were isolated from the juice of Semillon grapes by chitin affinity chromatography. Native and SDS-PAGE analyses of the fraction showing chitin affinity (active fraction) demonstrated only the presence of protein bands of chitinases. Three types of class IV chitinases (chi-1a, chi-1b and chi-2) were purified from the active fraction. These chitinases actively hydrolyzed chitin under acidic conditions (pH 4.0–4.5). The isoelectric points and the molecular weights of chi-1a, chi-1b and chi-2 were 4.73, 4.60, and 7.87, and 32.1 kDa, 31.6 kDa, and 29.0 kDa, respectively. The active fraction was found to inhibit Botrytis cinerea mycelial growth and the inhibitory effect was due to the activity of chitinases. The active fraction inhibited twenty strains of B. cinerea collected from the experimental vineyard. The effect of chitinases was enhanced in media containing more than 20% sugar. When the active fraction was tested on Glomerella cingulata, the growth inhibitory effect observed was markedly less than that seen on B. cinerea.  相似文献   

8.
Bacillus circulans WL-12, isolated as a yeast cell wall-lytic bacterium, secretes a variety of polysaccharide-degrading enzymes into culture medium. When chitinases of the bacterium were induced with chitin, six distinct chitinase molecules were detected in the culture supernatant. These chitinases (A1, A2, B1, B2, C, and D) showed the following distinct sizes and isoelectric points: Mr 74,000, pI 4.7 (A1); Mr 69,000, pI 4.5 (A2); Mr 38,000, pI 6.6 (B1); Mr 38,000, pI 5.9 (B2); Mr 39,000, pI 8.5 (C); and Mr 52,000, pI 5.2 (D). Among these chitinases, A1 and A2 had the highest colloidal-chitin-hydrolyzing activities. Chitinase A1 showed a strong affinity to insoluble substrate chitin. Purified chitinase A1 released predominantly chitobiose [(GlcNAc)2] and a trace amount of N-acetylglucosamine (GlcNAc) from colloidal chitin. N-terminal amino acid sequence analysis of chitinases A1 and A2 indicated that chitinase A2 was generated from chitinase A1, presumably by proteolytic removal of a C-terminal portion of chitinase A1. Since chitinase A2 did not have the ability to bind to chitin, the importance of the C-terminal region of chitinase A1 to the strong affinity of chitinase A1 to substrate chitin was suggested. Strong affinity of the chitinase seemed to be required for complete degradation of insoluble substrate chitin. From these results, it was concluded that chitinase A1 is the key enzyme in the chitinase system of this bacterium.  相似文献   

9.
Four kinds of thermostable chitinase were isolated from the cell-free culture broth of Bacillus licheniformis X-7u by successive column chromatographies on Butyl-Toyopearl, Q-Sepharose, and Sephacryl S-200. We named the enzymes chitinases I(89 kDa), II(76 kDa), III(66 kDa) and IV(59 kDa). Chitinases II, III and IV possessed extremely high optimum temperatures (70-80 degrees C), showing remarkable heat stability. Chitinases II, III and IV produced (GlcNAc)2 and GlcNAc from colloidal chitin and chitinase I predominantly produced (GlcNAc)2. The action pattern of chitinase I on PN-(GlcNAc)4 also showed a stronger propensity to cleave off the (GlcNAc)2 unit from the non-reducing end than the other three chitinases. Chitinases II, III and IV catalyzed a transglycosylation reaction that converted (GlcNAc)4 into (GlcNAc)6.  相似文献   

10.
Duo-Chuan LI  Chen S  Jing LU 《Mycopathologia》2005,159(2):223-229
Chitinases were produced by Talaromyces flavus CGMCC 3.4301 when it was grown in the presence of chitin. Two chitinases from the culture filtrate of T. flavus were purified to homogeneity by fractional ammonium sulphate precipitation, ion-exchange chromatography on DEAE–Sepharose and Phenyl–Sepharose hydrophobic interaction chromatography. By SDS–PAGE, the molecular weight of the two enzymes was estimated to be 41 and 32 kDa, respectively. The 41 kDa chitinase (CHIT41) had a 4.0 pH optimum; the 32 kDa chitinase (CHIT32) optimum activity was at pH 5.0. The optimum temperature for the two chitinase activities was 40 °C. The two chitinases had activity against cell wall of Verticillium dahliae, Sclerotinia sclerotiorum and Rhizoctonia solani, and inhibited spore germination and germ tube elongation of Alternaria alternata, Fusarium moniliforme, and Magnaporthe grisea.  相似文献   

11.
Four extracellular proteins with chitinase activity capable of binding chitin substrates have been revealed in the culture liquid of chitinase superproducing mutant strain M-1 of Serratia marcescens. Proteins were analyzed by SDS-PAGE and MALDI-TOF mass spectrometry. Based on the data obtained, the proteins were identified as typical chitinases of S. marcescens: ChiA, ChiB, ChiC, and CBP21.  相似文献   

12.
Characterization of chitinases excreted by Bacillus cereus CH   总被引:1,自引:0,他引:1  
Bacillus cereus CH was shown to excrete chitinases into the culture supernatant when cultivated in a medium containing 0.2% colloidal chitin, whereas the removal of colloidal chitin resulted in a low activity. After concentration of the culture supernatant by precipitation with ammonium sulfate, the induced chitinases were purified by sequential chromatography. Four different chitinases, A, B1, B2, and B3 with molecular masses of 35, 47, 58, and 64 kDa, respectively, were separated. All chitinases showed similarities in their kinetic parameters when observed with colloidal chitin, including an optimal pH of 5.0-7.5, and an optimal temperature between 50-60 degrees C. Chitinase A hydrolyzed glycol chitin and p-nitrophenyl-di-N-acetyl-beta-chitobioside at similar rates to that of colloidal chitin, whereas group B chitinases hydrolyzed both substrates in much lower rates. From analyses of the reaction products, it is most likely that chitinase A and all group B chitinases hydrolyze the substrates tested in an endo-fashion. However, group B chitinases were distinct from chitinase A in possessing high transglycosylation activity. From amino terminal sequencing, chitinases B1, B2, and B3 were shown to have almost identical sequences, which differed from that of chitinase A. The similarities in the reaction modes and amino terminal sequences among chitinases B1, B2, and B3 suggest that these chitinases may be derived from a presumptive precursor protein through C-terminal processing.  相似文献   

13.
A novel strain exhibiting entomopathogenic and chitinolytic activity was isolated from mangrove marsh soil in India. The isolate was identified as Brevibacillus laterosporus by phenotypic characterization and 16S rRNA sequencing and designated Lak1210. When grown in the presence of colloidal chitin as the sole carbon source, the isolate produced extracellular chitinases. Chitinase activity was inhibited by allosamidin indicating that the enzymes belong to the family 18 chitinases. The chitinases were purified by ammonium sulfate precipitation followed by chitin affinity chromatography yielding chitinases and chitinase fragments with 90, 75, 70, 55, 45, and 25 kDa masses. Mass spectrometric analyses of tryptic fragments showed that these fragments belong to two distinct chitinases that are almost identical to two putative chitinases, a 89.6-kDa four-domain chitodextrinase and a 69.4-kDa two-domain enzyme called ChiA1, that are encoded on the recently sequenced genome of B. laterosporus LMG15441. The chitinase mixture showed two pH optima, at 6.0 and 8.0, and an optimum temperature of 70 °C. The enzymes exhibited antifungal activity against the phytopathogenic fungus Fusarium equiseti. Insect toxicity bioassays with larvae of diamondback moths (Plutella xylostella), showed that addition of chitinases reduced the time to reach 50 % mortality upon infection with non-induced B. laterosporus from 3.3 to 2.1 days. This study provides evidence for the presence of inducible, extracellular chitinolytic enzymes in B. laterosporus that contribute to the strain’s antifungal activity and insecticidal activity.  相似文献   

14.
We report here the first analysis of chitinase regulation in Moniliophthora perniciosa, the causal agent of the witches' broom disease of cacao. A multivariate statistical approach was employed to evaluate the effect of several variables, including carbon and nitrogen sources and cultivation time, on M. perniciosa non-secreted (detected in mycelium, i.e. in symplasm and cell wall) and secreted (detected in the culture medium) chitinase activities. Non-secreted chitinase activity was enhanced by peptone and chitin and repressed by glucose. Chitinase secretion was increased by yeast extract alone or in combination with other nitrogen sources, and by N-acetylglucosamine, and repressed in presence of chitin. The best cultivation times for non-secreted and secreted chitinase activities were 30 and 20 d, respectively. However, chitinase activity was always higher in the mycelium than in the culture medium, suggesting a relatively poor chitinase secretion activity. Conversely, higher mycelial growth was observed when the activity of the non-secreted chitinase was at its lowest, i.e. when the fungus was grown on glucose and yeast extract as sources of carbon and nitrogen, respectively. Conversely, the induction of non-secreted chitinase activity by chitin decreased the mycelium growth. These results suggest that the culture medium, by the induction or repression of chitinases, affected the hyphal growth. Thus, as an essential component of M. perniciosa growth, chitinases may be a potential target for strategies to control disease.  相似文献   

15.
Chitinases isolated from membrane and cytosolic fractions of two mucoraceous fungi, Choanephora cucurbitarum and Phascolomyces articulosus, were investigated. The membrane-bound chitinase was isolated by Bio-Gel P-100 and DEAE Bio-Gel A chromatographic techniques. On SDS-PAGE the chitinase from both fungi migrated as a single band of M(r) 66 kDa. The cytosolic chitinase from the mycelial extracts of these fungi was separated by heat treatment, ammonium sulphate precipitation, and by affinity chromatography with regenerated chitin. SDS-PAGE showed two bands for each fungus with M(r) of 69.5 and 55 kDa in C. cucurbitarum and M(r) 69.5 and 53 kDa in Ph. articulosus. Chitinases, membrane bound or cytosolic, hydrolyzed regenerated chitin, colloidal chitin, glycol chitin, N,N'-diacetylchitobiose, and N,N',N"-triacetylchitotriose. Heavy metals, inhibitors, and N-acetylglucosamine inhibited chitinase activity, whereas trypsin and an acid protease enhanced its activity. Chitinase preparations showed lysozyme activity that was inhibited by histamine but not by N-acetylglucosamine. There was no N-acetylglucosamanidase activity, but beta-1,3 glucanase activity was found in cytosolic preparations only. Despite slight differences in their molecular mass, both the membrane-bound and cytosolic chitinases showed similarities in substrate utilization, response to inhibitors, and activation by trypsin and acid protease; pH and temperature optima also were similar.  相似文献   

16.
The psychrotolerant Pseudoalteromonas issachenkonii PAMC 22718 was isolated for its high exo-acting chitinase activity in the Kara Sea, Arctic. An exo-acting chitinase (W-Chi22718) was homogeneously purified from the culture supernatant of PAMC 22718, the molecular weight of which was estimated to be approximately 112?kDa. Due to its β-N-acetylglucosaminidase activity, W-Chi22718 was able to produce N-acetyl-D-glucosamine (GlcNAc) monomers from chitin oligosaccharide substrates. W-Chi22718 displayed chitinase activity from 0 to 37°C (optimal temperature of 30°C) and maintained activity from pH 6.0 to 9.0 (optimal pH of 7.6). W-Chi22718 exhibited a relative activity of 13 and 35% of maximal activity at 0 and 10°C, respectively, which is comparable to the activities of previously characterized, cold-adapted bacterial chitinases. W-Chi22718 activity was enhanced by K+, Ca2+, and Fe2+, but completely inhibited by Cu2+ and SDS. We found that W-Chi22718 can produce much more (GlcNAcs) from colloidal chitin, working together with previously characterized cold-active endochitinase W-Chi21702. Genome sequencing revealed that the corresponding gene (chi22718_IV) was 2,856?bp encoding a 951?amino acid protein with a calculated molecular weight of approximately 102?kDa.  相似文献   

17.
A locally isolated stain Aeromonas schubertii was cultured and induced by powdered chitin for the production of chitinases. Extracellular proteins were purified by ammonium sulfate precipitation, dialysis to remove salts, and then preparative isoelectric focusing (IEF) to yield several chitinases. The purified enzymes were analyzed by SDS–PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) with and without glycol chitin and were found to be SDS-resistant. The chitinase present in the highest abundance was the one with an estimated molecular weight of 75 kDa. The Michaelis constant and turnover number were determined to be 0.29 mM and 1 s−1, respectively, for this enzyme using colloidal chitin azure as the substrate. However, the ethanol treatment of this enzyme could significantly increase its chitinolytic activity. Other chitinases obtained in the same IEF fraction were determined to have molecular weights of ca. 30, 38, and 110 kDa. Since the proteins with highest chitinase activity were collected from IEF fraction tube with pH value of 4.8, those chitinase were believed to be acidic. An activity assay method using colloidal chitin azure as the substrate was recommended since it possessed a broader range of linearity in comparison with conventional reducing sugar equivalent method.  相似文献   

18.
Streptomyces venezuelae P10 could produce extracellular chitinase in a medium containing 0.6% colloidal chitin that was fermented for 96 hours at 30°C. The enzyme was purified to apparent homogeneity with 80% saturation of ammonium sulfate as shown by chitin affinity chromatography and DEAE-cellulose anion-exchange chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) of the enzyme showed a molecular weight of 66 kDa. The chitinase was characterized, and antifungal activity was observed against phytopathogens. Also, the first 15 N-terminal amino-acid residues of the chitinase were determined. The chitin hydrolysed products were N-acetylglucosamine and N, N-diacetylchitobiose.  相似文献   

19.
Thermococcus chitonophagus produces several, cellular and extracellular chitinolytic enzymes following induction with various types of chitin and chitin oligomers, as well as cellulose. Factors affecting the anaerobic culture of this archaeon, such as optimal temperature, agitation speed and type of chitin, were investigated. A series of chitinases, co-isolated with the major, cell membrane-associated endochitinase (Chi70), and a periplasmic chitobiase (Chi90) were subsequently isolated. In addition, a distinct chitinolytic activity was detected in the culture supernatant and partially purified. This enzyme exhibited an apparent molecular mass of 50 kDa (Chi50) and was optimally active at 80°C and pH 6.0. Chi50 was classified as an exochitinase based on its ability to release chitobiose as the exclusive hydrolysis product of colloidal chitin. A multi-component enzymatic apparatus, consisting of an extracellular exochitinase (Chi50), a periplasmic chitobiase (Chi90) and at least one cell-membrane-anchored endochitinase (Chi70), seems to be sufficient for effective synergistic in vivo degradation of chitin. Induction with chitin stimulates the coordinated expression of a combination of chitinolytic enzymes exhibiting different specificities for polymeric chitin and its degradation products. Among all investigated potential inducers and nutrient substrates, colloidal chitin was the strongest inducer of chitinase synthesis, whereas the highest growth rate was obtained following the addition of yeast extract and/or peptone to the minimal, mineralic culture medium in the absence of chitin. In rich medium, chitin monomer acted as a repressor of total chitinolytic activity, indicating the presence of a negative feedback regulatory mechanism. Despite the undisputable fact that the multi-component chitinolytic system of this archaeon is strongly induced by chitin, it is clear that, even in the absence of any chitinous substrates, there is low-level, basal, constitutive production of chitinolytic enzymes, which can be attributed to the presence of traces of chito-oligosaccharides and other structurally related molecules (in the undefined, rich, non-inducing medium) that act as potential inducers of chitinolytic activity. The low, basal and constitutive levels of chitinase gene expression may be sufficient to initiate chitin degradation and to release soluble oligomers, which, in turn, induce chitinase synthesis.  相似文献   

20.
In the presence of chitin,Aeromonas sp. DYU-Too7 can produce extra-cellular, chitin-degrading enzymes. Chitin analogues and other carbon sources can be used to cultivate this bacterial strain. The chitinases produced by the strain were higher in the GIcN (glucosamine) medium than those in other media. The maximal chitinase activity occurred in the medium containing 0.1% GIcN. Cultivation ofAeromonas sp. DYU-Too7 in the GIcN medium sped up the chitinase production; however the same result did not appear when it was cultivated in the (Chitin+GIcN) medium. This result may indicate that GIcN can be utilized byAeromonas sp. DYU-Too7 as a carbon source and an inducer to produce chitinases. A chitinase with a molecular mass of 36 kDa was further purified and characterized to have an optimal reacting pH of 5.0 and an optimal reacting temperature of 50°C. This chitinase showed high stability in the proximity of 30°C and also high stability in the proximity of pH 7.0. The hydrolysates of colloidal chitin, with the aid of the 36-kDa chitinase, were analyzed by an HPLC and found to be chitobiose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号