首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the 19 strains of Rhizopus delemar deposited as Rhizopus oryzae, seven of them, NBRC 4726, NBRC 4734, NBRC 4746, NBRC 4754, NBRC 4773, NBRC 4775, and NBRC 4801, completely hydrolyzed exogenous sucrose and fructooligosaccharides. The sucrose-hydrolyzing enzyme was purified from the culture filtrate of R. delemar NBRC 4754 and classified to β-fructofuranosidase, similar to that of Amylomyces rouxii CBS 438.76. Fragments including β-fructofuranosidase genes (sucA) of seven strains of R. delemar and A. rouxii CBS 438.76 were amplified and sequenced by PCR with degenerated primers synthesized on the basis of the internal amino acid sequences of purified enzymes and successive inverse PCR. Nucleotide sequences of the obtained fragments revealed that open reading frames of 1,569 bp have no intron and encode 522 amino acids. The presumed proteins contained the typical domain of the glycoside hydrolase 32 family, including β-fructofuranosidase, inulinase, levanase, and fructosyltransferases. Amino acid sequences of SucA proteins from the seven strains of R. delemar were identical and showed 90.0 % identity with those of A. rouxii CBS 438.76. A dendrogram constructed from these amino acid sequences showed that SucA proteins are more closely related to yeast β-fructofuranosidases than to other fungal enzymes.  相似文献   

2.
Rhizopus oryzae strain NBRC 4707 produced lactic acid and ethanol more efficiently than strain NRRL 395 in potato pulp, an agricultural by-product of the starch industry. The two strains developed comparable activities of xylanase, cellulase, -amylase, and glucoamylase, while the polygalacturonase activity of strain NBRC 4707 was double that of strain NRRL 395. The addition of commercial pectinase enhanced the formation of metabolites, suggesting that the degradation of pectic substances determines the fermentation of potato pulp by R. oryzae. Orange and apple peel were more effective in the induction of polygalacturonase activity than potato pulp, sugarbeet pulp, or wheat bran when used as a principal carbon source for fungal growth in a solid-state culture. The fungal cells in both types of fruit peel stimulated the fermentation of potato pulp and increased the quantity of lactic acid and ethanol to higher levels than those in other agricultural by-products.  相似文献   

3.
We investigated sex chromosome diversity in Zygosaccharomyces rouxii (Z. rouxii). In the current study, we show that the organization of the mating-type (MAT) locus is highly variable in the Z. rouxii population, indicating the MAT, HML, and HMR loci are translocation hotspots. Although NBRC1130 and CBS732 were originally two stocks of the type strain of the species, only NBRC1130 retains the original karyotype. A reciprocal translocation between the MAT and HMR loci appears to have occurred during the early passage culture of CBS732, which was used for genome sequencing. In NBRC1733, NBRC0686, NBRC0740 and NBRC1053, the terminal region of the chromosome containing the HMR locus was replaced with the chromosomal region to the left of the MAT or HML loci. The translocation events found in NBRC1733, NBRC0686, NBRC0740, and NBRC1053 were reconstructed under our experimental conditions using the DA2 background, and the reconstruction suggests that the frequency of this type of translocation is approximately 10−7. These results suggest that the MAT and MAT-like loci were the susceptible regions in the genome, and the diversity of mating-type chromosome structures in Z. rouxii was caused by ectopic exchanges between MAT-like loci.  相似文献   

4.
The pectinolytic enzyme from the solid-state culture of Rhizopus oryzae NBRC 4707 was purified to homogeneity by column chromatography on CM-Toyopearl 650 M and hydroxylapatite. The molecular weight of the enzyme was estimated by SDS-polyacrylamide gel electrophoresis to be 31,000 and was reduced to 29,700 after treatment with endoglycosidase H. Maximal activity was observed near pH 4.5 at 45°C. The enzyme was shown to be endopolygalacturonase, as judged from the formation of oligogalacturonides as its reaction products. The addition of purified enzyme, as expected, enhanced the formation of lactic acid and ethanol in potato pulp grown with R. oryzae.  相似文献   

5.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

6.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

7.
Aspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R. oryzae glucoamylase, had the highest glucoamylase activity on its cell surface.  相似文献   

8.
Lactic acid production from xylose by the fungus Rhizopus oryzae   总被引:1,自引:1,他引:0  
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure l(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g−1. By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l−1 showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l−1) and glucose (19.2 g l−1) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l−1 h−1 and 0.5 g xylose l−1 h−1. This resulted mainly into the product lactic acid (6.8 g l−1) and ethanol (5.7 g l−1).  相似文献   

9.
10.
In soy sauce brewing, the results of the fermentation of lactic acid greatly affect the quality of soy sauce. The soy sauce moromi produced with Aspergillus oryzae RIB40 allows the growth of Tetragenococcus halophilus NBRC 12172 but not T. halophilus D10. We isolated and identified heptelidic acid (HA), an inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), produced by A. oryzae RIB40 as the growth inhibitor of the salt-tolerant lactic acid bacteria. The growth inhibition of T. halophilus D10 by HA was suggested to be associated with the direct inhibition of GAPDH activity under high salt environment. The difference in the susceptibility to HA among various strains of T. halophilus was caused by the mutations in the gene encoding GAPDH.  相似文献   

11.
Twenty-seven strains of Rhizopus oryzae accumulating predominantly lactic acid were shown to possess two ldh genes, ldhA and ldhB, encoding NAD-dependent lactate dehydrogenases. Variation in nucleotide sequence was identified for each gene from different strains, and similar phylogenetic trees were obtained based on the nucleotide sequences of both genes. The other 21 strains of R. oryzae accumulating predominantly fumaric and malic acids contained a single ORF of ldhB. Compared to the strains accumulating predominantly lactic acid, a lower degree of sequence divergence was found in ldhB, resulting in a separate cluster in the phylogenetic tree. The high similarity (>90%) spanning the ORF and adjacent regions demonstrates that ldhA and ldhB are derived from the same ancestor gene. The strains accumulating predominantly fumaric and malic acids lack functional ldhA, which plays a role in lactic acid synthesis and may form a lineage separated from the strains accumulating predominantly lactic acid in the genus Rhizopus.  相似文献   

12.
The closely related fungi Rhizopus oryzae and Rhizopus delemar are often used for the production of lactic and fumaric acid, respectively. These organisms differ primarily by their ability to regenerate NAD through alternative fermentative routes. R. oryzae contains an NAD-dependent l-lactate dehydrogenase enzyme, RO-LdhA, that is primarily responsible for production of lactic acid, while both organisms contain another enzyme, LdhB that is thought to be involved in lactic acid production only under certain growth conditions. We have characterized LdhB from both R. oryzae and R. delemar, respectively referred to as RO-LdhB and RD-LdhB in this study, and have determined that RO-LdhB is significantly more effective than RD-LdhB with regard to kcat/Km with reductive LDH activity. Only negligible oxidative LDH activity could be measured with both enzymes; however, the presence of an amino terminal fusion with a small ubiquitin-related modifier, SUMO, increased the oxidative activity per μmol protein by more than 100-fold, while having little effect on the reductive LDH activity. We also determined that RO-LdhA, RO-LdhB, and RD-LdhB were all significantly inhibited in a non-competitive manner by fructose 1,6-bisphosphate (FBP) with Ki values of 1.2, 3.2, and 28.8 mM. Intracellular concentrations of FBP were tested with fermentative conditions to demonstrate that this metabolic intermediate does accumulate to levels that would likely cause inhibition of the R. oryzae LDH. Possible reasons for the significant Ki differences between the nearly identical LdhB proteins are discussed.  相似文献   

13.
Based on morphological characteristics the taxa included in the Aspergillus aggregate can hardly be differentiated. For that reason the phylogeny of this genus was revised several times as different criteria, from morphological to later molecular, were used. We found, comparing nucleotide sequences of the ITS-region, that the strain Aspergillus niger (DSM 823) which is claimed to be identical to the strains ATCC 10577, IMI 027809, NCTC 7193 and NRRL 2322 can be molecularly classified as Aspergillus tubingensis, exhibiting 100% identity with the A. tubingensis CBS strains 643.92 and 127.49. We amplified, cloned and sequenced a new glucoamylase gene (glaA) from this strain of A. tubingensis (A. niger DSM 823) using primers derived from A. niger glucoamylase G1. The amplified cDNA fragment of 2013 bp contained an open reading frame encoding 648 amino acid residues. The calculated molecular mass of the glucoamylase, deduced from the amino acid sequence, was 68 kDa. The nucleotide sequence of glaA showed 99% similarity with glucoamylases from Aspergillus kawachii and Aspergillus shirousami, whereas the similarity with the glucoamylase G1 from A. niger was 92% An erratum to this article is available at .  相似文献   

14.
The construction of a whole-cell biocatalyst with its sequential reaction has been performed by the genetic immobilization of two amylolytic enzymes on the yeast cell surface. A recombinant strain of Saccharomyces cerevisiae that displays glucoamylase and α-amylase on its cell surface was constructed and its starch-utilizing ability was evaluated. The gene encoding Rhizopus oryzae glucoamylase, with its own secretion signal peptide, and a truncated fragment of the α-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast α factor, respectively, were fused with the gene encoding the C-terminal half of the yeast α-agglutinin. The constructed fusion genes were introduced into the different loci of chromosomes of S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The glucoamylase and α-amylase activities were not detected in the culture medium, but in the cell pellet fraction. The transformant strain co-displaying glucoamylase and α-amylase could grow faster on starch as the sole carbon source than the transformant strain displaying only glucoamylase. Received: 16 June 1998 / Received last revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

15.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

16.
Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs.  相似文献   

17.
Five commercial preparations of glucoamylases (three fromAspergillus niger, one each fromAspergillus foetidus andAspergillus candidus) were purified by ultrafiltration, Sepharose-gel filtration and DEAE-sephadex chromatography. Two forms of the enzyme, namely glucoamylase I and glucoamylase II were obtained from the fungi except from one strain ofA. Niger. All the enzymes appeared homogeneous by electrophoresis and ultracentrifugation. The specific activities varied between 85 and 142 units. The pH and temperature optima were between 4 and 5, and 60‡C respectively. The molecular weight as determined by the sodium dodecyl sulphate-polyacrylamide gel electrophoresis ranged from 75,000 to 79,000 for glucoamylase I and 60,000 to 72,000 for glucoamylase II. OnlyA. niger glucoamylases contained phenylalanine at the N-terminal end. The amino acid composition of the enzymes was generally similar. However,A. niger andA. foetidus glucoamylases, in contrast toA. candidus enzymes, contained greater percentage of acidic than of basic amino acids. The enzymes contained 15 to 30% carbohydrate and 49 to 57 residues of monosaccharides per mol.A. niger enzymes contained mannose, glucose, galactose, xylose and glucosamine but theA. candidus enzyme lacked xylose and glucose and only xylose was absent inA, foetidus enzymes. Majority of the carbohydrate moieties were O-glycosidically linked through mannose to the hydroxyl groups of seline and threonine of the polypeptide chain.  相似文献   

18.
We conducted genome sequencing of the filamentous fungus Aspergillus sojae NBRC4239 isolated from the koji used to prepare Japanese soy sauce. We used the 454 pyrosequencing technology and investigated the genome with respect to enzymes and secondary metabolites in comparison with other Aspergilli sequenced. Assembly of 454 reads generated a non-redundant sequence of 39.5-Mb possessing 13 033 putative genes and 65 scaffolds composed of 557 contigs. Of the 2847 open reading frames with Pfam domain scores of >150 found in A. sojae NBRC4239, 81.7% had a high degree of similarity with the genes of A. oryzae. Comparative analysis identified serine carboxypeptidase and aspartic protease genes unique to A. sojae NBRC4239. While A. oryzae possessed three copies of α-amyalse gene, A. sojae NBRC4239 possessed only a single copy. Comparison of 56 gene clusters for secondary metabolites between A. sojae NBRC4239 and A. oryzae revealed that 24 clusters were conserved, whereas 32 clusters differed between them that included a deletion of 18 508 bp containing mfs1, mao1, dmaT, and pks-nrps for the cyclopiazonic acid (CPA) biosynthesis, explaining the no productivity of CPA in A. sojae. The A. sojae NBRC4239 genome data will be useful to characterize functional features of the koji moulds used in Japanese industries.  相似文献   

19.
A polygalacturonase from the filamentous fungus Rhizopus oryzae strain sb (NRRL 29086), previously shown to be effective in the retting of flax fibers, was shown by the analysis of its reaction products on polygalacturonic acid to be an endo-type. By zymogram analysis, the enzyme in the crude culture filtrate appeared as two active species of 37 and 40 kD. The endopolygalacturonase-encoding gene was cloned in Escherichia coli and its translated 383-amino acid sequence found to be identical to that of a presumed exopolygalacturonase found in R. oryzae strain YM9901 and 96% identical to a hypothetical protein (RO3G_04731.1) in the sequenced genome of R. oryzae strain 99–880. Phylogenetic analysis revealed the presence of an unique cluster of Rhizopus polygalacturonase sequences that are separate from other fungal polygalacturonases. Conservation of 12 cysteines appears to be a special feature of this family of Rhizopus polygalacturonase sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary The production of gamma-linolenic acid (GLA) by Mucor circinelloides CBS 203.28 and M. rouxii CBS 416.77 in fed-batch cultures operated in pH-stat mode with acetic acid as carbon substrate and titrant compared favourably with the performance of M. circinelloides in batch culture on glucose. On acetic acid M. circinelloides accumulated up to 39.8 mg GLA/g biomass, with a crude oil content of 28% containing 91% neutral lipids. The GLA content of the neutral lipid fraction was 15.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号