首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A gene encoding an extracellular lipase (CaLIP4) from Candida albicans was successfully expressed in Saccharomyces cerevisiae after mutagenesis of its unusual CUG serine codon into a universal one. The ability of this lipase, which shares 60% sequence homology with the lipase/acyltransferase from Candida parapsilosis, to synthesise esters was investigated. CaLIP4 behaved as a true lipase, displaying activity towards insoluble triglycerides and having no activity in the presence of short-chain fatty acid (FA) esters and phosphatidylcholine. Methyl, ethyl and propyl esters were efficiently used. The lipase exhibited highest selectivity for unsaturated FA. With saturated FAs, C14–C16 acyl chains were preferred. In a biphasic aqueous/lipid system, CaLIP4 displayed a high alcoholysis activity with a range of alcohols (e.g. methanol, ethanol, propanol and isopropanol) as acyl acceptor. During the course of the alcoholysis reaction, new esters are produced at concentrations above the thermodynamic equilibrium of the esterification reaction, indicating that ester synthesis does not proceed by esterification but mainly by direct acyltransfer. Ester synthesis is under kinetic control due to the high rate of alcoholysis. Unwanted hydrolysis is limited by competition between the acyl acceptor (alcohol) and water for the acyltransfer reaction, favouring the alcohol.  相似文献   

2.
The aim of this work was to produce docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) enriched acylglycerols by alcoholysis of tuna and sardine oils, respectively, using isobutanol and 1-butanol as acyl-acceptors. The alcoholysis reactions were catalyzed by lipases Lipozyme® TL IM from Thermomyces lanuginosus and lipase QLG® from Alcaligenes sp., because these lipases have shown selectivity towards DHA and EPA, respectively. Studies were made to determine the influence of reaction time, alcohol/oil molar ratio, lipase amount and temperature. In the optimized conditions for the alcoholysis of tuna and sardine oils catalyzed by Lipozyme TL IM and lipase QLG, respectively, the DHA and EPA contents were trebled (from 22 to 69% for DHA, and from 19 to 61% for EPA). The stability of both lipases was also determined. Although Lipozyme TL IM is much more stable in isobutanol than in ethanol, with the former the conversion attained after four reaction cycles was about 40% of the initial conversion. In similar conditions, the conversion obtained with lipase QLG was about 88% of the initial conversion. In addition, the separation of DHA enriched acylglycerols and isobutyl esters from an alcoholysis reaction was studied by liquid–liquid fractionation using the ethanol–water–hexane biphasic system. The DHA enriched acylglycerols obtained were 97.6% pure (64.4% DHA).  相似文献   

3.
The applications of enzymatic alcoholysis of cod liver oil for preparing omega-3 polyunsaturated fatty acid was investigated. Lipase CES and lipase PS-10 from Pseudomonas sp. catalyzed the alcoholysis of fish oil most effectively. Lipases used in the alcoholysis exhibited high stability, and may be used repeatedly for fish oil alcoholysis without significant loss of lipase activity. The method is simple, effective and practical for industrial application.  相似文献   

4.
The monoacylation of (η6-1,2-benzenedimethanol)tricarbonylchromium (2) by vinyl acetate, palmitate and benzoate, alcoholysis of the corresponding diesters of 2 in n-butanol, and acylation of (η6-benzyl alcohol) tricarbonylchromium by (±)-vinyl 2-phenoxypropanoate and 2-phenylpropanoate were accomplished with lipase P (from P. fluorescens) and lipase CC (from C. cylindracea) to give optically active organometallic esters. Their configurations indicated that the stereoselectivity of each of these two lipases was in marked contrast. An active site model for them is proposed.  相似文献   

5.
Summary Fatty acid esters of 2-ethyl-1-hexanol were produced in a small pilot scale from rapeseed oil by Candida cylindracea lipase catalyzed transesterification (alcoholysis) without added solvent. Up to 90% conversion of rapeseed oil (97% of theoretical) was obtained in 8 h in 2 kg scale at 37° C with 3.4% (w/w) lipase immobilized on an anion exchange resin Amberlite XAD-7, rapeseed oil:2-ethyl-1-hexanol substrate molar ratio of 2.8, and 3% (w/w) of added water.  相似文献   

6.
First enantioselective synthesis of S-(-)-1-[3-(4-tert-butylphenyl)-2-methyl]propyl-cis-3,5-dimethylmorpholine (6), biologically active enantiomer of the systematic fungicide fenpropimorph, is reported. It comprises reacting 4-tert-butylbenzylbromide with methyldiethylmalonate, decarbethoxylation of 2 into racemic 3-(4-tert-butylphenyl)-2-methylpropionic acid ethylester (3) in DMSO in the presence of alkali, then Pseudomonas sp. lipase catalyzed kinetic resolution of racemic 3 into S-(+)-acid (4), base-catalyzed racemization and recycling of the R-(-)-ester 3, acylation of cis-3,5-dimethylmorpholine, and final reduction of the intermediary amide 5 to provide enantiomerically pure S-(-)-6.  相似文献   

7.
Lipase-catalyzed alcoholysis was investigated in three different ionic liquids. Lyophilized native lipase had a low activity in all the ionic liquids but a poly(ethylene glycol) (PEG)-lipase complex (with a molar ratio of the polymer/enzyme of 10:1) had an increased activity of over 14-fold. Of several lipases tested, PEG-lipase PS (from Pseudomonas cepacia) exhibited the highest activity (1.07 mmol/(h g–1 protein)) in 1-octyl-3-methylimidazolium hexafluorophosphate.  相似文献   

8.
Summary Resolution of alkyn-3-ols has been achieved using a lipase from Candida rugosa to esterify the alcohols with trifluoroethyl butyrate in hexane to give the (S)-alcohols and the (R)-esters. Subsequent reacylation of the product alcohols and alcoholysis of the esters with 1-butanol furnished the (S)-alcohols with good (86–91% ees) and the (R)-butyrate with moderate enantiomeric purities (62–64% ees).  相似文献   

9.
《Chirality》2017,29(12):811-823
The synthesis of (R )‐1‐(pyridin‐4‐yl)ethyl acetate was achieved over tandem palladium‐lipase catalyst with 100% selectivity using 4‐acetyl pyridine as a reactant. The 2% w /w palladium and lipase catalyst was successfully co‐immobilized in the microenvironment of the mesocellular foam and characterized by various techniques. The palladium metal from catalyst hydrogenated 4‐acetyl pyridine to form 1‐(pyridin‐4‐yl)ethanol. The generated intermediate product then underwent kinetic resolution over lipase and selectively gave (R )‐1‐(pyridin‐4‐ yl)ethyl acetate. The catalytic conditions were then studied for optimal performance of both steps. The reaction conditions were optimized to 50 °C and toluene as a solvent. Both chemical and enzymatic kinetic models of the reaction were developed for a given set of reaction conditions and kinetic parameters were predicted. At optimal conditions, the obtained selectivity of intermediate (1‐(pyridin‐4‐yl)ethanol) was 51.38%. The final product yield of ((R )‐1‐(pyridin‐4‐yl)ethyl acetate) was 48.62%.  相似文献   

10.
Lipase LIP from Pseudomonas aeruginosa,one of nine commercially available hydrolytic enzymes, catalyzed the enantioselective alcoholysis of racemic 4-(1-acetoxy-2,2,2-trifluoroethyl)phenyl acetate with n-butanol, affording (S)-4-(1-hydroxy-2,2,2-trifluoroethyl)phenol at >99% e.e. (E = >100). Moreover, it also showed high enantioselectivity (E = >100) for the alcoholysis of the racemic o-substituted isomer, 2-(1-acetoxy-2,2,2-trifluoroethyl)phenyl acetate.  相似文献   

11.
Abstract

Candida antarctica lipase catalyzes a number of elementary reactions like alcoholysis, ammoniolysis and aminolysis in poly(ethylene glycol) (PEG) media. Reaction rates were comparable to or better than those observed in conventional organic reaction media and ionic liquids. It is envisaged that PEGs could have added benefits for performing biotransformations with highly polar substrates, which are sparingly soluble in common organic solvents.  相似文献   

12.
An efficient and convenient strategy for synthesis of enantiomerically pure S-2-(1-hydroxy-3-butenyl)-5-methylfuran was for the first time described utilizing a lipase-mediated asymmetric acylation in organic solvents. Rhizopus arrhizus lipase was chosen as the biocatalyst, and different immobilization methods including sol–gel encapsulation and covalent attachment were adopted to improve its catalytic characteristics. Various influential factors of the reaction were also investigated. Finally, the results showed that the lipase covalently attached onto epoxy resin exhibited the highest enantioselectivity and operational stability. Under optimized reaction conditions, i.e., n-hexane as the solvent, 5/1 (mol/mol) of vinyl acetate to 2-(1-hydroxy-3-butenyl)-5-methylfuran and 30 °C, the ee value of S-1 reached up to above 98% at 52% conversion with an E value of 99.  相似文献   

13.
The protective effect of the synthetic compensatory solutes, dimethylthetin (CAS 4727-41-7) and homodeanol betaine (N,?N-dimethyl-N-(2-hydroxyethyl)-N-(2 carboxyethyl) ammonium inner salt, CAS 6249-53-2), on two enzymes: lactate dehydrogenase (LDH from rabbit muscle) and a microbial lipase, was compared with that of glycine betaine, trehalose and sorbitol. When the enzyme plus 1?M solute were heated for 10?min at temperatures between 35–75°C, the temperature at which 50% of enzyme activity was lost increased most in the presence of trehalose (7.9° for LDH, 11.6° for lipase) and homodeanol betaine (10.7° for LDH, 11.0° for lipase). With both enzymes, more activity was retained at extreme temperatures in the presence of homodeanol betaine than with trehalose. Glycine betaine, dimethylthetin and sorbitol were less effective. Enzyme plus 1?M stabilizer solutions were frozen at ?30°C and freeze-dried for 24?h. Trehalose was the most effective stabilizer of lactate dehydrogenase, and homodeanol betaine of lipase, during freeze-drying.  相似文献   

14.
Two screenings of commercial lipases were performed to find a lipase with superior performance for the integrated production of biodiesel and monoglycerides. The first screening was carried out under alcoholysis conditions using ethanol as acyl acceptor to convert triglycerides to their corresponding ethyl esters (biodiesel). The second screening was performed under glycerolysis conditions to yield monoglycerides (MG). All lipases were immobilized on silica–PVA composite by covalent immobilization. The assays were performed using babassu oil and alcohols (ethanol or glycerol) in solvent free systems. For both substrates, lipase from Burkholderia cepacia (lipase PS) was found to be the most suitable enzyme to attain satisfactory yields. To further improve the process, the Response Surface Methodology (RSM) was used to determine the optima operating conditions for each biotransformation. For biodiesel production, the highest transesterification yield (>98%) was achieved within 48 h reaction at 39 °C using an oil-to-ethanol molar ratio of 1:7. For MG production, optima conditions corresponded to oil-to-glycerol molar ratio of 1:15 at 55 °C, yielding 25 wt.% MG in 6 h reaction. These results show the potential of B. cepacia lipase to catalyze both reactions and the feasibility to consider an integrated approach for biodiesel and MG production.  相似文献   

15.
The binding characteristics and the inhibitory power of atrazine and DCMU towards uncoupled electron flow activity were studied in acyl lipid-depleted thylakoid membranes from atrazine-susceptible and-resistant biotypes of Solanum nigrum L. For this purpose, phospholipase A2 from Vipera russelli and the lipase from Rhizopus arrhizus were used to obtain a selective lipid class (phospholipids or galactolipids) depletion which was restricted to the outer monolayer. Neither phospholipid nor galactolipid removal affected the dissociation constant and the number of binding sites of atrazine. In contrast, the dissociation constant of DCMU was increased in phospholipid-depleted thylakoid membranes but remained unchanged after galactolipid depletion. The number of DCMU binding sites decreased significantly after both lipase treatments, but only in the resistant biotype. The inhibitory effectiveness of the herbicide was either decreased or increased (to different extents) depending on the lipid class which was removed from the membrane and on the biotype considered. These results are discussed with reference to the possible conformational changes of the 32 kDa herbicide-binding polypeptide occurring after lipase treatments.Abbreviations Atrazine 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine - BSA bovine serum albumin - DCMU diuron, 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DGDG digalactosyldiacylglycerol - LRa lipase from Rhizopus arrhizus - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PG phosphatidylglycerol - PLA2 phospholipase A2 - R atrazine-resistant - S atrazinesusceptible  相似文献   

16.
Lipase-catalyzed optical resolution of trifluoro(aryl)ethanols   总被引:2,自引:0,他引:2  
Optical resolutions of racemic 2,2,2-trifluoro-1-(aryl)ethanols — (1-naphthyl), (2-naphthyl), (4-methylnaphthyl), (phenyl), (1-pyrenyl) — were achieved by lipase-catalyzed enantioselective acetylations with vinyl acetate as an acetyl donor in octane, and (S)-acetates and (R)-alcohols were obtained. Among the lipases tested, lipase from Pseudomonas aeruginosa (lipase LIP, Toyobo) showed good enantioselectivity for above ethanols. However, no acetylation occurred with sterically hindered alcohols — (9-phenanthryl), (9-anthryl), (2-methylnaphthyl), (2, 4, 6-trimethylphenyl) — by various lipases. The resolutions of the three alcohols were carried out by the enantioselective alcoholysis or hydrolysis of their chloroacetates by lipase LIP.  相似文献   

17.
The precipitation of N-cetylamine, N-cetylacetamide, hexadecane-1,2-diol, cetyl alcohol, and poly(butyl metacrylate) in acetone–water media in the presence of the lipase from Pseudomonas fluorescens was found to be accompanied by the coprecipitation of the enzyme. Within the lyophilized coprecipitates, the lipase exhibits a high catalytic activity and enantioselectivity in the reaction of (1RS)-phenylethanol acetylation with vinyl acetate in t-butyl methyl ether. In order of increasing lipase activity, the coprecipitates can be arranged in the series: cetyl alcohol, poly(butyl metacrylate), hexadecane-1,2-diol, N-cetylamine, and N-cetylacetamide, with the activity 2.5- to 19-fold exceeding the activity of the native enzyme. Immobilization of the lipase on solid supports, such as Celite 545 (physical sorption) and Eupergit C250L (covalent binding), in the presence of hexadecane-1,2-diol was found to increase the esterifying activity of the enzyme.  相似文献   

18.
Summary Lipase from Pseudomonas cepacia was modified with 2,4-bis[O-methoxypoly(ethylene glycol)]-6-chloro-s-triazine(activated PEG2) to form PEG-lipase. The PEG-lipase, soluble and active in organic solvents, catalyzes asymmetric alcoholysis of racemic -decalactone in alcohols to form (R)-5-hydroxydecanoic acid alkyl esters. The yield was 69% with 83% enantiomeric excess after 3 hr-reaction in n-decanol at 50°C. The advantage of this reaction is that the alcoholysis proceeds efficiently in straight hydrophobic substrates without any organic solvents.  相似文献   

19.
The lipase-catalyzed kinetic resolution of trans- and cis-2-azidocycloalkanols and the preparation of enantiomerically pure trans- and cis-2-aminocycloalkanols are described.

Four kinds of lipases were screened for the acetylation of trans- and cis-2-azidocycloalkanols. Among them, Pseudomonas sp. lipases (lipase PS and lipase AK, Amamo Pharmaceutical Co.) showed the highest enantioselectivity. These products were converted to the corresponding 2-aminocycloalkanols to determine their enantiomeric excess (ee) and absolute configurations by HPLC and CD analyses, using (S)-TBMB carboxylic acid [(S)-2-tert-butyl-2-methyl-1,3-benzodioxole-4-carboxylic acid] as the chiral conversion reagent. The results of the CD analysis proved N,O-bis-(S)-TBMB carboxylated cis-2-aminocycloalkanols to adopt a predominantly N-equatorial conformation.

The partially resolved trans- and cis-2-aminocycloalkanols, except for trans-2-aminocyclopentanol, were recrystallized from ethyl acetate to give enantiomerically pure forms.  相似文献   

20.
Three methods for enzyme modification/immobilization were compared to enhance the catalytic performance of a commercially available lipase, Lipase PS from Pseudomonascepacia, in highly enantioselective transesterification of an agrochemically useful sec-alcohol, (R,?S)-HMPC [=(R,?S)-4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopenten-1-one], with vinyl acetate as both acyl donor and reaction medium. The stearic acid-coated lipase showed the highest catalytic activity, with a specific activity improved by 54 times over the native lipase. The microcrystal salt-supported lipase and celite-adsorbed lipase also displayed much better performance as compared with the native lipase. All the three modified lipase preparations showed a similar thermal stability to that of the native enzyme. The enantioselectivity (E-value) was also quite satisfactory in all the cases (E>100 at 30°C), though a trend of slight decline was also observed with the temperature increase in the range of 25–60°C. The optimum aqueous pH, from which the modified lipases were prepared, was 6.0–7.0. A low water activity (aw) of ca. 0.1 was favorable for all the three modified lipases. The stearic acid-coated lipase displayed prominent advantages in catalyzing the transesterification reaction at a very high (R,?S)-HMPC concentration up to 1.0?M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号