首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 9.8-kbp DNA fragment which contained a neurotoxin gene and its upstream region was cloned from Clostridium botulinum type D strain CB-16. Nucleotide sequencing of the fragment revealed that genes encoding for hemagglutinin (HA) subcomponents and one for a nontoxic-nonhemagglutinin (NTNH) component were located upstream of the neurotoxin gene. This strain produced two toxins of different molecular size (approximately 300 kDa and 500 kDa) which were designated as progenitor toxins (M and L toxins). The molecular size of the NTNH component of L toxin was approximately 130 kDa on SDS-PAGE and its N-terminal amino acid sequence was M-D-I-N-D-D-L-N-I-N-S-P-V-D-N-K-N-V-V-I which agreed with that deduced from the nucleotide sequence. In contrast, the M toxin had a 115-kDa NTNH component whose N-terminal sequence was S-T-I-P-F-P-F-G-G-Y-R-E-T-N-Y-I-E, corresponding to the sequence from Ser141 of the deduced sequence. A 15-kDa fragment, which was found to be associated with an M toxin preparation, possessed the same N-terminal amino acid sequence as that of the 130-kDa NTNH component. Furthermore, five major fragments generated by limited proteolysis with V8 protease were shown to have N-terminal amino acid sequences identical to those deduced from the nucleotide sequence of 130-kDa NTNH. These results indicate that the 130-kDa NTNH of the L toxin is cleaved at a unique site, between Thr and Ser, leading to the 115-kDa NTNH of the M toxin.  相似文献   

2.
Thiobacillus ferrooxidans AP19-3 has a novel NADH-dependent sulfite reductase in the periplasmic space. The gene responsible for the appearance of NADH-dependent sulfite reductase activity was cloned into a vector plasmid pBR322 to give a 5.7-kb hybrid plasmid, pTHS1, which contains a 1.3-kb DNA fragment of T. ferrooxidans AP19-3. When pTHS1 was used to transform sulfite reductase deficient E. coli mutants, strain AT2455 (cysG), JM246 (cysl), and AT2427 (cysJ), it complemented only the E. coli cysG mutation. Since cysG codes for S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase, the enzyme involved in siroheme synthesis, the results indicate that the DNA region that codes for S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase is present in a T. ferrooxidans 1.3 kb DNA fragment on pTHS1.  相似文献   

3.
Summary The streptococcal cloning vector pIL253 (4.96-kbp, Emr) was used to introduce the Streptomyces antibioticus tyrosinase (mel) gene (1.56-kbp) into S. thermophilus, an important microbe in dairy fermentations. Electrotransformants of S. thermophilus ST128 contained 6.51-kbp recombinant plasmids which probed positively in Southern hybridizations with the biotin-labeled mel fragment. Western blots of cell extracts resolved by SDS-PAGE showed the presence of a ca. 31-kDa band thus confirming the synthesis of tyrosinase protein by genetic transformants.  相似文献   

4.
Pseudomonas testosteroni ATCC 17410 is able to grow on testosterone. This strain was mutagenized by Tn5, and 41 mutants defective in the utilization of testosterone were isolated. One of them, called mutant 06, expressed 3-oxosteroid delta 1- and 3-oxosteroid delta 4-5 alpha-dehydrogenases only at low levels. The DNA region around the Tn5 insertion in mutant 06 was cloned into pUC19, and the 1-kbp EcoRI-BamHI segment neighbor to the Tn5 insertion was used to probe DNA from the wild-type strain. The probe hybridized to a 7.8-kbp SalI fragment. Plasmid pTES5, which is a pUC19 derivative containing this 7.8-kbp SalI fragment, was isolated after the screening by the 1-kbp EcoRI-BamHI probe. This plasmid expressed delta 1-dehydrogenase in Escherichia coli cells. The 2.2-kbp KpnI-KpnI segment of pTES5 was subcloned into pUC18, and pTEK21 was constructed. In E. coli containing the lacIq plasmid pRG1 and pTEK21, the expression of delta 1-dehydrogenase was induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The induced level was about 40 times higher than the induced level in P. testosteroni. Delta 1-Dehydrogenase synthesized in E. coli was localized in the inner membrane fraction. The minicell experiments showed that a 59-kDa polypeptide was synthesized from pTEK21, and this polypeptide was located in the inner membrane fraction. The complete nucleotide sequence of the 2.2-kbp KpnI-KpnI segment of pTEK21 was determined. An open reading frame which encodes a 62.4-kDa polypeptide and which is preceded by a Shine-Dalgarno-like sequence was identified. The first 44 amino acids of the putative product exhibited significant sequence similarity to the N-terminal sequences of lipoamide dehydrogenases.  相似文献   

5.
A contiguous region of about 30 kbp of DNA putatively encoding reactions in daunomycin biosynthesis was isolated from Streptomyces sp. strain C5 DNA. The DNA sequence of an 8.1-kbp EcoRI fragment, which hybridized with actI polyketide synthase (PKS) and actIII polyketide reductase (PKR) gene probes, was determined, revealing seven complete open reading frames (ORFs), two in one cluster and five in a divergently transcribed cluster. The former two genes are likely to encode PKR and a bifunctional cyclase/dehydrase. The five latter genes encode: (i) a homolog of TcmH, an oxygenase of the tetracenomycin biosynthesis pathway; (ii) a PKS Orf1 homolog; (iii) a PKS Orf2 homolog (chain length factor); (iv) a product having moderate sequence identity with Escherichia coli beta-ketoacyl acyl carrier protein synthase III but lacking the conserved active site; and (v) a protein highly similar to several acyltransferases. The DNA within the 8.1-kbp EcoRI fragment restored daunomycin production to two dauA non-daunomycin-producing mutants of Streptomyces sp. strain C5 and restored wild-type antibiotic production to Streptomyces coelicolor B40 (act VII; nonfunctional cyclase/dehydrase), and to S. coelicolor B41 (actIII) and Streptomyces galilaeus ATCC 31671, strains defective in PKR activity.  相似文献   

6.
7.
A 5.6-kbp fragment ofSpiroplasma citri DNA containing thednaA gene has been cloned and sequenced. Nucleotide sequence analysis shows that this fragment harbors the genes for the replication initiator protein (dnaA), the beta subunit of DNA polymerase III (dnaN), and the DNA gyrase subunits A and B (gyrA andgyrB). The arrangement of these genes,dnaA-dnaN-gyrB-gyrA, is similar to that found in all Gram-positive bacterial genomes studied so far, except that norecF gene was found betweendnaN andgyrB. Several DnaA-box consensus sequences were found upstream ofdnaA and in thednaA-dnaN intergenic region. ThednaA region with the flanking DnaA-boxes and the tetracycline resistance determinant,tetM, were linked into a circular recombinant DNA. This DNA was able to replicate autonomously when introduced by electroporation intoS. citri cells. These experiments show that thednaA region with the DnaA-boxes is the origin of replication ofS. citri and can be used to construct gene vectors.  相似文献   

8.
The genome of human cytomegalovirus strain AD169 contains a region of heterogeneity located at the junction between the long (L) and short (S) components of the viral DNA. Twelve cloned L-S junction fragments were studied by using the restriction enzymes HaeII and XhoI. The region of heterogeneity was localized within a single HaeII restriction fragment. The enzyme XhoI was used to subdivide this region and revealed the presence of three types of heterogeneity within the junction fragments. Each of the cloned junction fragments contained one of the following fragments: 0.553, 0.95, or 1.35 kilobase pairs (referred to as class I heterogeneity). Class II heterogeneity was defined as the presence of tandem duplications of class I fragments. In addition, a variable number (0 to 5) of a 0.2-kbp fragment (class III heterogeneity) was observed. Mapping of these fragments with partial XhoI digestions revealed that the class I and class III heterogeneous fragments were adjacent. The DNA sequence of the smallest cloned L-S junction fragment was determined and analyzed. This junction fragment contained a single 0.553-kbp XhoI fragment and no copies of the 0.2-kbp fragment. The 0.553-kbp XhoI fragment was similar in structure to the a-sequences of herpes simplex virus types 1 and 2. In addition, a region of homology was found between the a sequences of herpes simplex virus types 1 and 2 and the 0.553-kbp XhoI fragment from the human cytomegalovirus junction.  相似文献   

9.
The complicated process of exotoxin A production by Pseudomonas aeruginosa is controlled by several genes. We have recently described a toxA positive regulatory gene, ptxR. We also proposed the presence of another gene which is adjacent to ptxR and interferes with ptxR function on exotoxin A production. In the presence of a fragment that carries the putative gene, the enhancement in exotoxin A production by ptxR was reduced threefold. In this study, we describe the characterization of this gene. Nucleotide sequence analysis of the 2.1-kbp fragment at the 5′ end of ptxR revealed the presence of an open reading frame designated ptxS (the gene next to ptxR) which encodes a 37.4-kDa protein. The gene ptxS is transcribed in the opposite orientation to ptxR from the other DNA strand. The deduced amino acid sequence of ptxS exhibited a strong homology to several proteins of the GalR-LacI family of repressors. A putative helix-turn-helix DNA binding motif was identified at the amino-terminus region of PtxS. When PtxS was overexpressed in Escherichia coli using the T7 expression system, a single protein of 38-kDa molecular weight was detected. An isogenic mutant defective in ptxS was constructed in PAO1 using the gene replacement technique. The loss of ptxS resulted in a twofold increase in exotoxin A production compared to PAO1. The effect of ptxS on ptxR was examined using a ptxR-lacZ fusion. In the presence of ptxS, the level of β-galactosidase activity produced by the ptxR-lacZ fusion was significantly reduced. These results suggest that ptxS encodes a protein which negatively regulates ptxR expression in P. aeruginosa. Received: 29 September 1997 / Accepted: 22 December 1997  相似文献   

10.
Fimbriae preparation from Actinobacillus actinomycetemcomitans was found to contain an abundant low-molecular-weight protein (termed Flp) with an apparent molecular mass of approximately 6.5 kDa, in addition to a small amount of 54-kDa protein. Immunogold electron microscopy localized the Flp protein at the bacterial fimbriae but not at the cell surface. The DNA fragment including the flp gene was cloned from A. actinomycetemcomitans 304-a and its nucleotide sequence was determined. An open reading frame of the flp gene was composed of 225 bp encoding a protein of 75 amino acids. Comparison of the translated amino acid sequence with the sequence of native Flp determined by Edman degradation indicated that the N-terminal part of 26 amino acids is leader peptide. The N-terminal sequence of mature Flp exhibited some similarity to type-IV pilin. Furthermore, the processing site of premature Flp is also similar to that of type-IV prepilin, and a gene encoding a protein homologous to type-IV prepilin-like protein leader peptidase was found downstream of the flp gene. These findings indicate that Flp is the major component protein of A. actinomycetemcomitans fimbriae.  相似文献   

11.
Mutations in five phenotypically distinct mutants derived from herpes simplex virus type 1 strain KOS which lie in or near the herpes simplex virus DNA polymerase (pol) locus have been fine mapped with the aid of cloned fragments of mutant and wild-type viral DNAs to distinct restriction fragments of 1.1 kilobase pairs (kbp) or less. DNA sequences containing a mutation or mutations conferring resistance to the antiviral drugs phosphonoacetic acid, acyclovir, and arabinosyladenine of pol mutant PAAr5 have been cloned as a 27-kbp Bg+II fragment in Escherichia coli. These drug resistance markers have been mapped more finely in marker transfer experiments to a 1.1-kbp fragment (coordinates 0.427 to 0.434). In intratypic marker rescue experiments, temperature-sensitive (ts), phosphonoacetic acid resistance, and acyclovir resistance markers of pol mutant tsD9 were mapped to a 0.8-kbp fragment at the left end of the EcoRI M fragment (coordinates 0.422 to 0.427). The ts mutation of pol mutant tsC4 maps within a 0.3-kbp sequence (coordinates 0.420 to 0.422), whereas that of tsC7 lies within the 1.1-kbp fragment immediately to the left (coordinates 0.413 to 0.420). tsC4 displays the novel phenotype of hypersensitivity to phosphonoacetic acid; however, the phosphonoacetic acid hypersensitivity phenotype is almost certainly not due to the mutation(s) conferring temperature sensitivity. The ts mutation of mutant tsN20--which does not affect DNA polymerase activity--maps to a 0.5-kbp fragment at the right-hand end of the EcoRI M fragment (coordinates 0.445 to 0.448). The mapping of the mutations in these five mutants further defines the limits of the pol locus and separates mutations differentially affecting catalytic functions of the polymerase.  相似文献   

12.
A mutant of Saccharomyces cerevisiae defective in the S-adenosylmethionine (AdoMet)-dependent methyltransferase step of diphthamide biosynthesis was selected by intracellular expression of the F2 fragment of diphtheria toxin (DT) and shown to belong to complementation group DPH5. The DPH5 gene was cloned, sequenced, and found to encode a 300-residue protein with sequence similarity to bacterial AdoMet:uroporphyrinogen III methyltransferases, enzymes involved in cobalamin (vitamin B12) biosynthesis. Both DPH5 and AdoMet:uroporphyrinogen III methyltransferases lack sequence motifs commonly found in other methyltransferases and may represent a new family of AdoMet:methyltransferases. The DPH5 protein was produced in Escherichia coli and shown to be active in methylation of elongation factor 2 partially purified from the dph5 mutant. A null mutation of the chromosomal DPH5 gene did not affect cell viability, in agreement with other studies indicating that diphthamide is not required for cell survival. The dph5 null mutant survived expression of three enzymically attenuated DT fragments but was killed by expression of fully active DT fragment A. Consistent with these results, elongation factor 2 from the dph5 null mutant was found to have weak ADP-ribosyl acceptor activity, which was detectable only in the presence of high concentrations of fragment A.  相似文献   

13.
The amino acid sequence of glutamate decarboxylase from Escherichia coli was solved by a combination of automated Edman degradation of peptide fragments derived by proteolytic and chemical cleavage and sequencing of DNA. Correct alignment of three peptides, for which no peptide overlaps were available, was achieved by sequencing a 1.1-kbp fragment of DNA produced by a polymerase-chain reaction using primers corresponding to sequences known to be in amino-terminal and carboxy-terminal regions of the protein. Sequence similarity (24% identity) with mammalian glutamate decarboxylase was found to be limited to a 55-residue sequence around the lysine residue that binds the coenzyme. Stronger similarity (38% identity), again confined to the same region, is seen with bacterial pyridoxal-phosphate-dependent histidine decarboxylase.  相似文献   

14.
The mitochondria of chive plants with normal N or male-sterile S cytoplasms have been examined by restriction fragment analysis and Southern hybridizations of mitochondrial DNA (mtDNA) and in organello protein biosynthesis. Restriction fragment patterns of the mtDNA differed extensively between N-and S-cytoplasms. The percentage of fragments with different mobility varied between 44–48% depending on the restriction enzyme used. In contrast to mtDNA, the restriction fragment patterns of the chloropolast DNA from N- and S-cytoplasms were identical. The organization of the analyzed mitochondrial genes coxII, coxIII, nad1 and nad3 was different in N- and S-cytoplasms. Comparison of mitochondrial proteins analyzed by in organello translation revealed an 18-kDa protein present only in S-cytoplasm. The restorer gene X suppressed the synthesis of that protein in S-cytoplasm. Thus, the 18-kDa protein seems to be associated with the cytoplasmic male-sterile phenotype.  相似文献   

15.
A 5.5-kb DNA fragment containing the indole-3-acetyl-aspartic acid (IAA-asp) hydrolase gene (iaaspH) was isolated from Enterobacter agglomerans strain GK12 using a hybridization probe based on the N-terminal amino acid sequence of the protein. The DNA sequence of a 2.4-kb region of this fragment was determined and revealed a 1311-nucleotide ORF large enough to encode the 45-kDa IAA-asp hydrolase. A 1.5-kb DNA fragment containing iaaspH was subcloned into the Escherichia coli expression plasmid pTTQ8 to yield plasmid pJCC2. Extracts of IPTG-induced E. coli cultures containing the pJCC2 recombinant plasmid showed IAA-asp hydrolase levels 5 to 10-fold higher than those in E. agglomerans extracts. Homology searches revealed that the IAA-asp hydrolase was similar to a variety of amidohydrolases. In addition, IAA-asp hydrolase showed 70% sequence identity to a putative thermostable carboxypeptidase of E. coli. Received: 12 March 1998 / Accepted: 30 March 1998  相似文献   

16.
The gene for spiralin, the major membrane protein of the helical mollicute Spiroplasma citri, was cloned in Escherichia coli as a 5-kilobase-pair (kbp) DNA fragment. The complete nucleotide sequence of the 5.0-kbp spiroplasmal DNA fragment was determined (GenBank accession no. M31161). The spiralin gene was identified by the size and amino acid composition of its translational product. Besides the spiralin gene, the spiroplasmal DNA fragment was found to contain five additional open reading frames (ORFs). The translational products of four of these ORFs were identified by their amino acid sequence homologies with known proteins: ribosomal protein S2, elongation factor Ts, phosphofructokinase, and pyruvate kinase, respectively encoded by the genes rpsB, tsf, pfk, and pyk. The product of the fifth ORF remains to be identified and was named protein X (X gene). The order of the above genes was tsf--X--spiralin gene--pfk--pyk. These genes were transcribed in one direction, while the gene for ribosomal protein S2 (rpsB) was transcribed in the opposite direction.  相似文献   

17.
A 100-kDa DNA binding protein was found to be dramatically up-regulated upon the mitogenic stimulation of murine splenocytes with bacterial lipopolysaccharide (LPS). The induced DNA binding protein was also found to exhibit moderate binding specificity for the immunoglobulin isotype switch DNA repeats. Furthermore, the induction of the 100-kDa protein by LPS was found to be mediated by both an increase in the protein's stability and an increase in the synthesis of the protein. In vitro phosphorylation experiments revealed that the 100-kDa DNA binding protein was one of the most heavily phosphorylated proteins in both lymphoid and nonlymphoid nuclear extracts. Although this in vitro phosphorylation initially appeared to be mediated by a potent nuclear kinase activity, it was later determined that a significant part of the detected labeling was due to the direct binding of ATP by the 100-kDa protein. Antibodies raised to the 100-kDa DNA binding protein were used to isolate cDNA clones from a lymphocyte cDNA λgt11 expression library. Nucleotide sequence analysis revealed that the cloned cDNAs were identical to the mouse nucleolin gene. The β-galactosidase fusion proteins (encoded by exons 3-14 of nucleolin) and a more severely truncated 45-kDa protein (encoded by exons 5-14 of nucleolin) were both found to bind strongly to DNA and ATP. Furthermore, the strength of DNA binding was found to be highly dependent on the overall dG content of the DNA probes. Our experiments also revealed that apart from binding ATP and G-rich DNA, nucleolin directly bound GTP, dATP, and dGTP, but not dCTP, dTTP, or dUTP. Computer analysis revealed that the putative ATP binding domains appear to fall within two of the phylogenetically conserved RNA binding domains of nucleolin.  相似文献   

18.
19.
Among the Epstein-Barr virions (EBV) produced by the P3HR-1 (HR-1) cell line are a defective subpopulation with rearranged viral DNA designated heterogeneous DNA (het DNA). These defective virions are responsible for the capacity of HR-1 virus to induce early antigen in Raji c cells and for trans activation of latent EBV in X50-7 cells. Virions with het DNA are independent replicons which pass horizontally from cell to cell rather than being partitioned vertically. We analyzed the structure and defined several polypeptide products of het DNA to understand these remarkable biologic properties. A 36-kilobase-pair (kbp) stretch of het DNA was cloned (as two EcoRI fragments of 20 and 16 kbp) from virions released from a cellular subclone of HR-1 cells. The unusual aspect of the 20-kbp fragment was the linkage of sequences of BamHI-M and BamHI-B', which are not adjacent on the standard EBV genome. The 16-kbp fragment was a palindrome in which at least two additional recombinations on each side of the palindrome had linked regions of the standard EBV genome which are not normally contiguous. The 20-kbp het DNA fragment was attached to at least one and possibly both ends of the 16-kbp het DNA fragment. We identified antigenic polypeptides produced in COS-1 cells after gene transfer of various cloned het DNA fragments. The 20-kbp fragment encoded a cytoplasmic antigen of about 95 kilodaltons (kDa). The 16-kbp fragment encoded antigens located in the nucleus, nuclear membrane, and cytoplasm. These were represented by several polypeptides, the most prominent of which were about 55, 52, and 36 kDa. The 36-kDa polypeptide was localized to a 2.7-kbp BamHI fragment which had homology to standard BamHI-W and BamHI-Z. Another polypeptide of 50 kDa found in the nucleus was mapped to the 7.1-kbp BamHI het DNA fragment which spans the EcoRI site linking the 20- and 16-kbp fragments of het DNA. Thus, HR-1 het DNA encodes several discrete polypeptide products, one or more of which could be responsible for the unusual biologic properties of the virus. The composition, regulation, and ultimately the expression of some of these products relative to standard EBV is probably altered by the genomic rearrangements of het DNA.  相似文献   

20.
Salmonella enteritidis is a major foodborne microbial pathogen that can grow and survive at low temperatures for a considerable period of time. Increased survival was evidenced from a frozen S. enteritidis culture when treated at 10°C prior to freezing. Western blot analysis with Escherichia coli CspA antibody and analysis of radiolabeled proteins from S. enteritidis cultures after cold shock at 10°C and 5°C showed increased expression of a 7.4-kDa major cold shock protein, CS7.4, similar in size to that reported for E. coli. Cloning followed by nucleotide sequence analysis of the cspA gene from S. enteritidis showed a 100% nucleotide sequence identity in the promoter elements (−35 and −10) and the amino acid sequence encoded by the open reading frame (ORF) with the E. coli cspA gene. However, the differences in the nucleotide sequences between E. coli and S. enteritidis cspA genes in the putative repressor protein binding domain, the fragment 7, and in various segments throughout the upstream 0.642-kbp DNA may contribute to the expression of CS7.4 at less stringent temperatures in S. enteritidis. As in E. coli, the actual role of CS7.4 in protecting S. enteritidis from the damaging effects of cold or freezing temperatures is not yet understood. Received: 14 March 1997 / Accepted: 10 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号