首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was previously reported that α-amylase accumulation is caused within the mycelium grown in a phosphate deficient medium and the concentration of anions or pH in a surrounding medium is responsible for its liberation. As it was subsequently found that α-amylase liberation from the mycelium of Aspergillus oryzae is stimulated by peptone, an attempt was made on purification of effective substances from it. The present paper describes on purification and properties of phosphopeptides found as an effective substance for α-amylase liberation, and discusses on the stimulation effect, comparing with the effects on pH and concentration of anions which were previously observed.  相似文献   

2.
3.
Aspergillus oryzae strains express α-amylases abundantly, and the genome reference strain RIB40 has three α-amylase genes (amyA, amyB, and amyC). However, there is no information on the contribution ratios of individual α-amylase genes to total expression. In this study, we generated single, double, and triple disruptants of α-amylase genes by employing a strain (ΔligD) with high gene-targeting efficiency and pyrG marker recycling in A. oryzae. All the disruptants showed reduced activities of α-amylases, and the triple disruptant completely lost activity. Comparative analyses of the activities and mRNA amounts of the α-amylases suggest that the contribution of amyA to the α-amylase expression is smaller than those of amyB and amyC. The present study suggests that the ability to express a large amount of α-amylases in A. oryzae is attributed to gene duplication of genes such as amyB and amyC.  相似文献   

4.
In a previous paper it has been described that α-amylase formation in Aspergillus oryzae is stimulated by soluble starch, glycogen and maltose, whereas it is inhibited by glucose, which is added into a growing medium or a secondary incubation medium as the carbon source. The present paper reports that isomaltose and panose are the most effective inducers among a large number of sugars examined here, and suggests the importance of transglucosidase action demonstrated in view of α-amylase formation. The initial action of inducers in this system is also discussed.  相似文献   

5.
The systemic immune response against orally administered antigens is suppressed (oral tolerance), and this has been postulated to avoid excess immunity against dietary constituents which are present in large amounts in the gastrointestinal tract. Taking into consideration that such orally administered protein antigens are subjected to enzymatic degradation in the gastrointestinal tract, we examined whether an enzymatic digest of milk proteins could induce oral tolerance. A tryptic digest of casein, containing mainly fragments smaller than 6000 Da, was fed to mice as a constituent of their diet. Mice fed with the casein-digest diet responded poorly to subsequent immunization with casein, indicating that oral tolerance to casein was induced in these animals. The results suggest the presence of immunosuppressive fragment(s) in the casein digest, which may be of use for preventing milk allergy.  相似文献   

6.
Aspergillus oryzae is a filamentous fungus that has arisen through the ancient domestication of Aspergillus flavus for making traditional oriental foods and beverages. In the many centuries A. oryzae has been used for fermenting the starch in rice to simple sugars, it has undergone selection for increased secretion of starch-degrading enzymes. In particular, all A. oryzae strains investigated thus far have two or more copies of a gene encoding α-amylase, whereas A. flavus has only one. Here we investigate the duplications leading to these copies in three A. oryzae strains. We find evidence of at least three separate duplications of α-amylase, an example of parallel evolution in a micro-organism under artificial selection. At least two of these duplications appear to be associated with activity of transposable elements of the Tc1/mariner class. Both involve a 9.1 kb element that terminates in inverted repeats, encodes a putative transposase and another putative protein of unknown function, and contains an unusual arrangement of four short internal imperfect repeats. Although "unusual Mariners" of this size have previously been identified in A. oryzae, Aspergillus fumigatus and Aspergillus nidulans, this is the first evidence we know of that at least some of them are active in modern times and that their activity can contribute to beneficial genetic changes.  相似文献   

7.
The production of extracellular α-amylase in Bacillus subtilis is probably regulated by many genetic elements, such as amyR, tmrA7, pap, amyB and sacU. Additional genetic elements, C-108 and A-2 for production of the α-amylase were found in D-cycloserine and ampicillin resistant mutants (C108 and A2) of B. subtilis 6160, respectively. Strain C108 increased the production of α-amylase about 5 times and protease about 80 times compared to parental 6160 strain. Strain A2 showed a nearly 6-fold increased α-amylase production.

These genetic elements displayed a synergistic effect with other genetic factors in production of extracellular α-amylase when these elements were transferred by DNA mediated transformation. By stepwise introduction of these and other genetic elements into B. subtilis 6160 by transformation and mutation, strains with higher α-amylase producing activity were obtained. The finally obtained strain, T2N26, produced about 1,500-2,000 times more α-amylase than parental 6160 strain.  相似文献   

8.
An α-amylase which produces maltohexaose as the main product from strach was found in the culture filtrate of Bacillus circulans G-6 which was isolated from soil and identified by the author.

The enzyme was purified by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex G-200 column chromatography. The purified enzyme was homogeneous on disc electrophoresis. The optimum pH and temperature of the enzyme were around pH 8.0 and around 60°C, respectively. The enzyme was stable in the range of pH 5–10. Metal ions such as Hg2+, Cu2+, Zn2+, Fe2+ and Co2+ inhibited the enzyme activity. The molecular weight was about 76,000. The yield of maltohexaose from soluble starch of DE (dextrose equivalent*) 1.8-12.6 was about 30%, and the combined action of the enzyme and pullulanase or isoamylase increased the yield of maltohexaose.  相似文献   

9.
AmyL, an extracellular α-amylase from Bacillus licheniformis, is resistant to extracellular proteases secreted by Bacillus subtilis during growth. Nevertheless, when AmyL is produced and secreted by B. subtilis, it is subject to considerable cell-associated proteolysis. Cell-wall-bound proteins CWBP52 and CWBP23 are the processed products of the B. subtilis wprA gene. Although no activity has been ascribed to CWBP23, CWBP52 exhibits serine protease activity. Using a strain encoding an inducible wprA gene, we show that a product of wprA, most likely CWBP52, is involved in the posttranslocational stability of AmyL. A construct in which wprA is not expressed exhibits an increased yield of α-amylase. The potential role of wprA in protein secretion is discussed, together with implications for the use of B. subtilis and related bacteria as hosts for the secretion of heterologous proteins.The cell envelope of the gram-positive bacterium Bacillus subtilis consists of a single (cytoplasmic) membrane surrounded by a relatively thick cell wall consisting of similar proportions of peptidoglycan and covalently attached anionic polymers. The absence of an outer membrane means that there is no equivalent of the membrane-enclosed periplasm found in gram-negative bacteria. However, by virtue of its thickness and high density of negative charge, the cell wall may perform some of the roles of the periplasm in gram-positive bacteria.The absence of an outer membrane in gram-positive bacteria also simplifies the secretion pathway, and, consequently, B. subtilis and its close relatives have the potential to secrete proteins directly into the growth medium, at concentrations in excess of 5 grams per liter (4). Despite its extensive use in the production of commercially important Bacillus enzymes (e.g., α-amylases and alkaline proteases), attempts to exploit B. subtilis for the production of heterologous proteins at high concentrations have proved disappointing (8). One reason for this failure is the production and release into the culture medium of several extracellular proteases (24, 28, 37). Although native Bacillus proteins are generally resistant to these proteases, heterologous proteins are often rapidly degraded in their presence. As a result, strains of B. subtilis that are multiply deficient in extracellular proteases have been developed (11, 37). The more developed of these strains have less than 1% of the proteolytic activity of the wild type (37). To date, efforts have concentrated mainly on the proteases which reside in a truly extracellular location, while those which remain cell associated have been largely overlooked.Although strains deficient in extracellular proteases have improved the productivity of B. subtilis for the production of heterologous proteins, they have only partially overcome problems of unexpectedly low yields. We and others have recently shown (22, 31) that significant amounts of secretory protein are degraded within minutes of being synthesized. This degradation is observed even for Bacillus proteins that are highly resistant to proteases released into the culture medium, suggesting that a component of this degradation is cell associated.Margot and Karamata recently reported the identification of a cell-wall-associated protease encoded by the wprA gene (21). The primary product of this gene is a 96-kDa polypeptide that is processed into two previously identified cell wall proteins, namely, CWBP52 and CWBP23. The processing of the WprA precursor during secretion accompanies the targeting of CWBP52 and CWBP23 to the cell wall and is analagous to the processing of another B. subtilis cell-wall-bound protein, namely, WapA (5). The amino acid sequence of CWBP52 shows a high degree of similarity with serine proteases of the subtilisin family, and phenylmethylsulfonile fluoride (PMSF)-sensitive protease activity was detected in proteins extracted from the cell wall of a wprA+ strain, but not one in which this gene had been insertionally inactivated (21). In the absence of homology to proteins in the databases, the N-terminal CWBP23 moiety was presumed to function as a chaperone-like propeptide that is proteolytically processed on the trans side of the membrane. In this paper, we report on a potential role of products of wprA in the integrity of secretory proteins during late stages in the secretion pathway. We also discuss the potential of wprA mutants to increase the productivity of B. subtilis for secretory proteins.  相似文献   

10.
Summary Extracellular -N-acetylhexosaminidase in basic specific activity 1.5 U/mg protein was induced 15 – 35 times (up to 50 U/mg protein) by mixture of chitooligomers (crude chitin hydrolysate), 10 – 20 times (20 – 30 U/mg protein) by N-acetylglucosamine, and 10 times (14 U/mg protein) by chitosan in Aspergillus oryzae. Addition of NaCl (15 – 23 g/l) to the cultivation medium enhanced the induction in 10 – 20 %.  相似文献   

11.
Aims: To improve the α‐amylase production in solid‐state fermentation (SSF) condition utilizing a new bioreactor (NB) system. Methods and Results: In NB system, 20 g of wheat bran moistened with liquid medium in 1 : 1 ratio (w/v) was taken on the tray present inside the upper vessel and an additional 80 ml medium was supplemented into the lower vessel. Oxygen uptake rate was improved by supplying compressed air that lifted the liquid medium into the upper vessel and touched the substrate bed. This condition probably facilitated the heat transfer to liquid medium, reduce water loss and catabolite repression. With 1% glucose supplementation, maximum α‐amylase activity of 22 317 Ugds?1 was produced by Aspergillus oryzae IFO 30103 within a very short incubation period (48 h) at 2‐cm bed height with air flow rate of 0·1 l min?1 g?1 wheat bran at 32°C and initial medium pH of 6. Conclusions: Within a short incubation period, significantly high α‐amylase activity was obtained and it is higher than those reported to date at bioreactor scale operating with a fungal strain. Significance and Impact of the Study: The reactor is novel and can overcome some of the major problems associated with SSF process. A. oryzae IFO 30103 is reported as the best fungal source for α‐amylase production.  相似文献   

12.
Monochlorotrifluoro-p-benzoquinone (CFQ) was used for investigating the state of the amino groups of acid-stable α-amylase and acid-unstable α-amylase. About half of the total amino groups in both enzyme molecules were reacted with the reagent. The unreactive amino groups seemed to exist in a different state from the reactive ones. Both enzymes whose amino groups were modified by CFQ still maintained the α-phenylmaltosidase activity in spite of losing or decreasing the amylase activity. These facts suggest that the amino groups of both enzymes were not in the active site but the modification of them caused steric hindrance.

The pH-stability of the acid-unstable α-amylase whose one or two amino groups were modified with succinic anhydride or 2,4,6-trinitrobenzene-l-sulfonate (TNBS) increased on the acidic side and decreased on the alkaline side, but further modification of them led to decrease the stability on both sides.  相似文献   

13.
alpha-Galactosidase and invertase were accumulated in a coherent middle phase in a three-phase partitioning system under different conditions (ammonium sulphate, ratio of tert-butanol to crude extract, temperature and pH). alpha-Galactosidase and invertase were purified 15- and 12-fold with 50 and 54% activity recovery, respectively. The fractions of interfacial precipitate arising from the three-phase partitioning were analyzed by SDS-PAGE. Both purified preparations showed electrophoretic homogeneity on SDS-PAGE.  相似文献   

14.
The production of -glucosidase by Aspergillus terreus was investigated in liquid shake cultures. Enzyme production was maximum on the 7th day of growth (2.18 U/ml) with the initial pH of the medium in the range of 4.0–5.5. Cellulose (Sigmacell Type 100) at 1.0% (wt/vol) gave maximum -glucosidase activity among the various soluble and insoluble carbon sources tested. Potassium nitrate was a suitable nitrogen source for enzyme production. Triton X-100 at 0.15% (vol/vol) increased the enzyme levels of A. terreus. The test fungal strain showed an ability to ferment glucose to ethanol.  相似文献   

15.
Seven different yeast, Candida tropicalis, Hansenula anomala, Lipomyces sp., Pichia membranaefaciens, Saceharomycopsis fibuligera, Saccharomyces cerevisiae and Trichosporaon pullulans were screened for amylolytic activity during a study of some cereal based fermented foods. Maximum alpha-amylase activity was observed in S. fibuligera (6.56 unit/ml), whereas the minimun was observed in S. cerevisiae (1.93 unit/ml). The mutagenic treatment of S. fibuligera improved the yield by two fold as compared to the wild type which was restricted to the stationary growth phase in shake culture. The standard conditions for optimum enzyme production were 1.5% w/v substrate concentration, pH 5.0 and incubation at 28°C.  相似文献   

16.
The effect of biomass concentration on the formation of Aspergillus oryzaeα-amylase during submerged cultivation with A. oryzae and recombinant A. nidulans strains has been investigated. It was found that the specific rate of α-amylase formation in chemostats decreased significantly with increasing biomass concentration in the range of approx. 2–12 g dry weight kg−1. When using a recombinant A. nidulans strain in which the gene responsible for carbon catabolite repression of the A. oryzaeα-amylase gene (creA) was deleted, no significant decrease in the specific rate of α-amylase formation was observed. On the basis of the experimental results, it is suggested that the low value of the specific α-amylase productivity observed at high biomass concentration is caused by slow mixing of the concentrated feed solution in the viscous fermentation medium. Received: 13 January 2000 / Received revision: 30 June 2000 / Accepted: 1 July 2000  相似文献   

17.
γ-Glutamylglycylglycine (γ-GluGlyGly) was formed through the γ-glutamyltranspeptidase (GGT) reaction catalyzed by glutaminase in a water extract of wheat bran koji obtained with Aspergillus oryzae MA-27-IM. The yield of γ-GluGlyGly was about 18% from l-glutamine in a reaction mixture containing 50 mM l-glutamine, 50 mM glycylglycine, and the extract (0.1 unit ml as GGT activity) in a 100 mM Tris-HCl buffer solution (pH 7.2), which was incubated for 7 h at 30°C. The γ-GluGlyGly formed was purified by ion exchange chromatographies, and the identified by chemical and enzymatic methods as well as by infrared and PMR spectroscopic analyses.  相似文献   

18.
19.
Applied Microbiology and Biotechnology - Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically...  相似文献   

20.
Properly folded proteins destined for secretion exit through a specific subdomain of the endoplasmic reticulum (ER) known as transitional ER (tER) sites or ER exit sites (ERES). While such proteins in filamentous fungi localize at the hyphal tips overlapping the Spitzenk?rper, the distribution of misfolded proteins remains unknown. In the present study, we analyzed the distribution of mutant protein as well as ER and tER sites visualized by expression of AoClxA and AoSec13 fused with fluorescent protein, respectively, in the filamentous fungus Aspergillus oryzae. Discrete tER subdomains were visualized as the punctate dots of AoSec13 overlapping or associated with AoClxA distribution. Both ER and tER sites were concentrated near hyphal tips and formed apical gradients. Interestingly, while the expression of wild-type α-amylase fusion protein (AmyB-mDsRed) showed its localization coinciding with the Spitzenk?rper, a disulfide bond-deletion in AmyB causing its misfolding resulted in its accumulation in the subapical and basal ER, creating a reciprocal gradient to the tER sites. Furthermore, the reciprocal gradient enabled a clear distinction between the tER sites and the mutant AmyB accumulation sites near the apex. Based on these findings, we conclude that A. oryzae accumulates aberrant proteins toward basal hyphae while maintaining polarized tER sites for secretion of properly folded proteins at the hyphal tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号