首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The facultative piezophile Shewanella violacea DSS12 is known to alter its respiratory components under the influence of hydrostatic pressure during growth, suggesting that it has a respiratory system that functions in adaptation to high pressure. We investigated the pressure- and temperature-dependencies of the respiratory terminal oxidase activity of the membrane of S. violacea relative to non-piezophilic Shewanella species. We observed that the activity in the membrane of S. violacea was more resistant to high pressure than those of non-piezophilic Shewanella even though DSS12 was cultured under atmospheric pressure. On the other hand, the temperature dependency of this activity was almost the same for all of the tested strain regardless of optimal growth temperature. Both high pressure and low temperature are expected to lower protein flexibility, causing a decrease in enzyme activity, but the results of this study suggest that the mechanism maintaining enzyme activity under high hydrostatic pressure is different from that at low temperature. Additionally, the responses of the activity to the pressure- and temperature-changes were independent of membrane lipid composition. Therefore, the piezotolerance of the respiratory terminal oxidases of S. violacea is perhaps dependent on the properties of the protein itself and not on the lipid composition of the membrane. Our observations suggest that S. violacea constitutively express piezotolerant respiratory terminal oxidases that serve adaptation to the deep-sea environment.  相似文献   

2.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

3.
Upon nitrogen step-down, some filamentous cyanobacteria differentiate heterocysts, cells specialized for dinitrogen fixation, a highly oxygen sensitive process. Aerobic respiration is one of the mechanisms responsible for a microaerobic environment in heterocysts and respiratory terminal oxidases are the key enzymes of the respiratory chains. We used Anabaena variabilis strain ATCC 29413, because it is one of the few heterocyst-forming facultatively chemoheterotrophic cyanobacteria amenable to genetic manipulation. Using PCR with degenerate primers, we found four gene loci for respiratory terminal oxidases, three of which code for putative cytochrome c oxidases and one whose genes are homologous to cytochrome bd-type quinol oxidases. One cytochrome c oxidase, Cox2, was the only enzyme whose expression, tested by RT-PCR, was evidently up-regulated in diazotrophy, and therefore cloned, sequenced, and characterized. Up-regulation of Cox2 was corroborated by Northern and primer extension analyses. Strains were constructed lacking Cox1 (a previously characterized cytochrome c oxidase), Cox2, or both, which all grew diazotrophically. In vitro cytochrome c oxidase and respiratory activities were determined in all strains, allowing for the first time to estimate the relative contributions to total respiration of the different respiratory electron transport branches under different external conditions. Especially adding fructose to the growth medium led to a dramatic enhancement of in vitro cytochrome c oxidation and in vivo respiratory activity without significantly influencing gene expression.  相似文献   

4.
Rhodospirillum rubrum CAF10, a spontaneous cytochrome oxidase defective mutant, was isolated from strain S1 and used to analyze the aerobic respiratory system of this bacterium. In spite of its lack of cytochrome oxidase activity, strain CAF10 grew aerobically in the dark although at a decreased rate and with a reduced final yield. Furthermore, aerobically grown mutant cells took up O2 at high rates and membranes isolated from those cells exhibited levels of NADH and succinate oxidase activities which were similar to those of wild type membranes. It was observed also that whereas in both strains O2 uptake (intact cells) and NADH and succinate oxidase activities (isolated membranes) were not affected by 0.2 mM KCN, the cytochrome oxidase activity of the wild type strain was inhibited about 90% by 0.2 mM KCN. These data indicate the simultaneous presence of two terminal oxidases in the respiratory system of R. rubrum, a cytochrome oxidase and an alternate oxidase, and suggest that the rate of respiratory electron transfer is not limited at the level of the terminal oxidases. It was also found that the aerobic oxidation of cellular cytochrome c 2 required the presence of a functional cytochrome oxidase activity. Therefore it seems that this electron carrier, which only had been shown to participate in photosynthetic electron transfer, is also a constituent of the respiratory cytochrome oxidase pathway.Abbreviations DCIP 2,6-dichlorophenolindophenol - DMPD N,N-dimethyl-p-phenylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]-glycine  相似文献   

5.
The gram-positive endospore-forming bacterium Bacillus subtilis has, under aerobic conditions, a branched respiratory system comprising one quinol oxidase branch and one cytochrome oxidase branch. The system terminates in one of four alternative terminal oxidases. Cytochrome caa(3) is a cytochrome c oxidase, whereas cytochrome bd and cytochrome aa(3) are quinol oxidases. A fourth terminal oxidase, YthAB, is a putative quinol oxidase predicted from DNA sequence analysis. None of the terminal oxidases are, by themselves, essential for growth. However, one quinol oxidase (cytochrome aa(3) or cytochrome bd) is required for aerobic growth of B. subtilis strain 168. Data indicating that cytochrome aa(3) is the major oxidase used by exponentially growing cells in minimal and rich medium are presented. We show that one of the two heme-copper oxidases, cytochrome caa(3) or cytochrome aa(3), is required for efficient sporulation of B. subtilis strain 168 and that deletion of YthAB in a strain lacking cytochrome aa(3) makes the strain sporulation deficient.  相似文献   

6.

This study describes the thiosulfate-supported respiratory electron transport activity of Thiomonas bhubaneswarensis strain S10 (DSM 18181T). Whole-genome sequence analysis revealed the presence of complete sox (sulfur oxidation) gene cluster (soxCDYZAXB) including the sulfur oxygenase reductase (SOR), sulfide quinone reductase (SQR), sulfide dehydrogenase (flavocytochrome c (fcc)), thiosulfate dehydrogenase (Tsd), sulfite dehydrogenase (SorAB), and intracellular sulfur oxidation protein (DsrE/DsrF). In addition, genes encoding respiratory electron transport chain components viz. complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (ubiquinone-cytochrome c reductase), and various types of terminal oxidases (cytochrome c and quinol oxidase) were identified in the genome. Using site-specific electron donors and inhibitors and by analyzing the cytochrome spectra, we identified the shortest thiosulfate-dependent electron transport chain in T. bhubaneswarensis DSM 18181T. Our results showed that thiosulfate supports the electron transport activity in a bifurcated manner, donating electrons to quinol (bd) and cytochrome c (Caa 3 ) oxidase; these two sites (quinol oxidase and cytochrome c oxidase) also showed differences in their phosphate esterification potential (oxidative phosphorylation efficiency (P/O)). Further, it was evidenced that the substrate-level phosphorylation is the major contributor to the total energy budget in this bacterium.

  相似文献   

7.
The structural features of cytochrome oxidases are reviewed in light of their evolution. The substrate specificity (quinol vs. cytochromec) is reflected in the presence of a unique copper centre (Cu A ) in cytochromec oxidases. In several lines of evolution, quinol oxidases have independently lost this copper. Also, the most primitive cytochromec oxidases do not contain this copper, and electron entry takes place viac-type haems. These enzymes, exemplified by the rhizobial FixN complex, probably remind the first oxidases. They are related to the denitrification enzyme nitric oxide reductase.  相似文献   

8.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

9.
Freya A. Bundschuh  Klaus Hoffmeier 《BBA》2008,1777(10):1336-1343
Biogenesis of cytochrome c oxidase (COX) relies on a large number of assembly proteins, one of them being Surf1. In humans, the loss of Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder. In the soil bacterium Paracoccus denitrificans, homologous genes specifying Surf1 have been identified and located in two operons of terminal oxidases: surf1q is the last gene of the qox operon (coding for a ba3-type ubiquinol oxidase), and surf1c is found at the end of the cta operon (encoding subunits of the aa3-type cytochrome c oxidase). We introduced chromosomal single and double deletions for both surf1 genes, leading to significantly reduced oxidase activities in membrane. Our experiments on P. denitrificans surf1 single deletion strains show that both Surf1c and Surf1q are functional and act independently for the aa3-type cytochrome c oxidase and the ba3-type quinol oxidase, respectively. This is the first direct experimental evidence for the involvement of a Surf1 protein in the assembly of a quinol oxidase. Analyzing the heme content of purified cytochrome c oxidase, we conclude that Surf1, though not indispensable for oxidase assembly, is involved in an early step of cofactor insertion into subunit I.  相似文献   

10.
The terminal oxidases of Paracoccus denitrificans   总被引:4,自引:2,他引:2  
Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding sub unit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (ActaDI, ActaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. Thisprotohaem-containing oxidase, called cytochrome bb3, is the oniy quinoi oxidase expressed under the conditions used, in a triple oxidase mutant (ActaDI, ActaDII, cyoB::KmR) an alternative cyto-chrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.  相似文献   

11.
Proton pumping heme-copper oxidases represent the terminal, energy-transfer enzymes of respiratory chains in prokaryotes and eukaryotes. The CuB-heme a3 (or heme o) binuclear center, associated with the largest subunit I of cytochrome c and quinol oxidases, is directly involved in the coupling between dioxygen reduction and proton pumping. The role of the other subunits is less clear. The following aspects will be covered in this paper:i) the efficiency of coupling in the mitochondrial aa3 cytochrome c oxidase. In particular, the effect of respiratory rate and protonmotive force on the H+/e? stoichiometry and the role of subunit IV; ii) mutational analysis of the aa3 quinol oxidase of Bacillus subtilis addressed to the role of subunit III, subunit IV and specific residues in subunit I; iii) possible models of the protonmotive catalytic cycle at the binuclear center. The observations available suggest that H+/e?coupling is based on the combination of protonmotive redox catalysis at the binuclear center and co-operative proton transfer in the protein.  相似文献   

12.
The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n‐dodecyl‐β‐d ‐maltoside for a precisely defined mixture of two α‐maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality.  相似文献   

13.
The superfamily of quinol and cytochrome c terminal oxidase complexes is related by a homologous subunit containing six positionally conserved histidines that ligate a low-spin heme and a heme–copper dioxygen activating and reduction center. On the basis of the structural similarities of these enzymes, it has been postulated that all members of this superfamily catalyze proton translocation by similar mechanisms and that the CuA center found in most cytochrome c oxidase complexes serves merely as an electron conduit shuttling electrons from ferrocytochrome c into the hydrophobic core of the enzyme. The recent characterization of cytochrome c oxidase complexes and structurally similar cytochrome c:nitric oxide oxidoreductase complexes without CuA centers has strengthened this view. However, recent experimental evidence has shown that there are two ubiquinone(ol) binding sites on the Escherichia coli cytochrome bo 3 complex in dynamic equilibrium with the ubiquinone(ol) pool, thereby strengthening the argument for a Q(H2)-loop mechanism of proton translocation [Musser SM et al. (1997) Biochemistry 36:894–902]. In addition, a number of reports suggest that a Q(H2)-loop or another alternate proton translocation mechanism distinct from the mitochondrial aa 3 -type proton pump functions in Sulfolobus acidocaldarius terminal oxidase complexes. The possibility that a primitive quinol oxidase complex evolved to yield two separate complexes, the cytochrome bc 1 and cytochrome c oxidase complexes, is explored here. This idea is the basis for an evolutionary tree constructed using the notion that respiratory complexity and efficiency progressively increased throughout the evolutionary process. The analysis suggests that oxygenic respiration is quite an old process and, in fact, predates nitrogenic respiration as well as reaction-center photosynthesis. Received: 11 June 1997 / Accepted: 30 October 1997  相似文献   

14.
It is known that the facultative piezophile Shewanella violacea DSS12 alters its respiratory components under the influence of hydrostatic pressure during growth. This can be considered one of the mechanisms of bacterial adaptation to high pressure. In this study, we investigated the respiratory system of another well-studied piezophile, Photobacterium profundum SS9. We analyzed cytochrome contents, the expression of genes encoding respiratory components in P. profundum SS9 grown under various conditions, and the pressure dependency of the terminal oxidase activities. Activity was more tolerant of relatively high pressures, such as 125 MPa when the cells were grown under high pressure as compared with cells grown under atmospheric pressure. Such properties observed are similar to the case of S. violacea. However, the contents of the cytochromes and expression of the respiratory genes were not influenced by growth pressure in P. profundum SS9, inconsistent with the case of S. violacea. We suggest that the mechanism of the piezoadaptation of the respiratory system of P. profundum SS9 differs from that of S. violacea, as described above, and that each strain chooses its own strategy.  相似文献   

15.
Shewanella violacea DSS12 is a psychrophilic facultative piezophile isolated from the deep sea. In a previous study, we have shown that the bacterium adapted its respiratory components to alteration in growth pressure. This appears to be one of the bacterial adaptation mechanisms to high pressures. In this study, we measured the respiratory activities of S. violacea grown under various pressures. There was no significant difference between the cells grown under atmospheric pressure and a high pressure of 50 MPa relative to oxygen consumption of the cell-free extracts and inhibition patterns in the presence of KCN and antimycin A. Antimycin A did not inhibit the activity completely regardless of growth pressure, suggesting that there were complex III-containing and -eliminating pathways operating in parallel. On the other hand, there was a difference in the terminal oxidase activities. Our results showed that an inhibitor- and pressure-resistant terminal oxidase was expressed in the cells grown under high pressure. This property should contribute to the high-pressure adaptation mechanisms of S. violacea.  相似文献   

16.
Gisela Brändén  Peter Brzezinski 《BBA》2006,1757(8):1052-1063
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2-reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

17.
In Paracoccusdenitrificans the aa3-type cytochrome c oxidase and the bb3-type quinol oxidase have previously been characterized in detail, both biochemically and genetically. Here we report on the isolation of a genomic locus that harbours the gene cluster ccoNOQP, and demonstrate that it encodes an alternative cbb3-type cytochrome c oxidase. This oxidase has previously been shown to be specifically induced at low oxygen tensions, suggesting that its expression is controlled by an oxygen-sensing mechanism. This view is corroborated by the observation that the ccoNOQP gene cluster is preceded by a gene that encodes an FNR homologue and that its promoter region contains an FNR-binding motif. Biochemical and physiological analyses of a set of oxidase mutants revealed that, at least under the conditions tested, cytochromes aa3, bb3. and cbb3 make up the complete set of terminal oxidases in P. denitrificans. Proton-translocation measurements of these oxidase mutants indicate that all three oxidase types have the capacity to pump protons. Previously, however, we have reported decreased H+/e coupling efficiencies of the cbb3-type  相似文献   

18.
An oligonucleotide directed against a highly conserved region of aa3-type cytochrome c oxidases was used to clone the cox genes from the cyanobacterium Synechocystis sp. PCC6803. Several overlapping clones were obtained that contained the coxB, coxA, and coxC genes, transcribed in the same direction in that order, coding for subunits II, I, and III, respectively. The deduced protein sequences of the three subunits showed high sequence similarity with the corresponding subunits of all known aa3-type cytochrome c oxidases. A 1.94-kb HindII fragment containing most of coxA and about half of coxC was deleted and replaced by a cassette coding for kanamycin resistance. Mutant cells that were homozygous for the deleted cox locus were obtained. They were viable under photoautotrophic and photoheterotrophic conditions, but contained no cytochrome c oxidase activity. Nevertheless, these mutant cells showed almost normal respiration, defined as cyanide-inhibitable O2 uptake by whole cells in the dark. It is concluded, therefore, that aa3-type cytochrome c oxidase is not the only terminal respiratory oxidase in Synechocystis sp. PCC6803.Abbreviations CM cytoplasmic membrane - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HQNO 2-heptyl-4-hydroxyquinoline N-oxide - ICM intracytoplasmic membranes - SU subunit - TES (N-tris(hydroxymethyl)methyl)-2-aminoethane sulfonic acid  相似文献   

19.
Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.  相似文献   

20.
An isolate of L. monocytogenes Scott A that is tolerant to high hydrostatic pressure (HHP), named AK01, was isolated upon a single pressurization treatment of 400 MPa for 20 min and was further characterized. The survival of exponential- and stationary-phase cells of AK01 in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer was at least 2 log units higher than that of the wild type over a broad range of pressures (150 to 500 MPa), while both strains showed higher HHP tolerance (piezotolerance) in the stationary than in the exponential phase of growth. In semiskim milk, exponential-phase cells of both strains showed lower reductions upon pressurization than in buffer, but again, AK01 was more piezotolerant than the wild type. The piezotolerance of AK01 was retained for at least 40 generations in rich medium, suggesting a stable phenotype. Interestingly, cells of AK01 lacked flagella, were elongated, and showed slightly lower maximum specific growth rates than the wild type at 8, 22, and 30°C. Moreover, the piezotolerant strain AK01 showed increased resistance to heat, acid, and H2O2 compared with the wild type. The difference in HHP tolerance between the piezotolerant strain and the wild-type strain could not be attributed to differences in membrane fluidity, since strain AK01 and the wild type had identical in situ lipid melting curves as determined by Fourier transform infrared spectroscopy. The demonstrated occurrence of a piezotolerant isolate of L. monocytogenes underscores the need to further investigate the mechanisms underlying HHP resistance of food-borne microorganisms, which in turn will contribute to the appropriate design of safe, accurate, and feasible HHP treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号