首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether chylomicron formation is involved in the dietary phosphatidylcholine (PC)-induced increase in triglyceride (TG) absorption using an inhibitor of chylomicron formation, pluronic L-81 (L-81). In rats, cannulas were implanted into the duodenum (exps. 1 and 2) and the mesenteric lymph duct (exp. 1), and an emulsified lipid solution containing the test lipids (soybean oil, SO or soybean oil plus phosphatidylcholine, LE) with or without L-81 was infused through a duodenal cannula at a rate 3 ml/h for 2 h, and followed by infusion of a glucose-NaCl solution for 2 h. Mesenteric lymph was collected for 4 h (exp. 1). In exp. 2, the mucosa and contents of the small intestine were collected at 20, 40, or 90 min after the start of duodenal infusion of the test lipid to evaluate accumulation of lipids incorporated into the mucosa in the rats without a lymph cannula. In exp. 1, lymphatic TG outputs rapidly increased with infusion of both test lipids without L-81, but L-81 abolished these increases. TG accumulated in the small intestinal mucosa with L-81 treatment in a time-dependent manner, but the levels of accumulation were similar between the SO and LE groups (exp. 2). There were no differences in the amounts of lipid remaining in the small intestinal lumen between the L-81-treated SO and LE groups. These results indicate that uptake of lipid into the mucosal cells was not increased by LE. We conclude that the formation of chylomicron is responsible for increases in the promotive effect of a high level of dietary PC on the lymphatic absorption of TG.  相似文献   

2.
Intestinal lipid absorption is associated with marked increases in the synthesis and secretion of apolipoprotein A-IV (apoA-IV) by the small intestine. Whether the increased intestinal apoA-IV synthesis and secretion results from increased fat uptake, increased cellular triglyceride (TG) content, or increased secretion of TG-rich lipoproteins by the enterocytes is unknown. Previous work from this laboratory has shown that a hydrophobic surfactant, Pluronic L-81 (L-81), is a potent inhibitor of intestinal formation of chylomicrons (CM), without reducing fat uptake or re-synthesis to TG. Furthermore, this inhibition can be reversed quickly by the cessation of L-81 infusion. Thus L-81 offers a unique opportunity to study the relationship between lymphatic TG, apoA-I and A-IV secretion. In this study, we studied the lymphatic transport of TG, apoA-I, and apoA-IV during both the inhibitory phase (L-81 infused together with lipid) and the subsequent unblocking phase (saline infusion). Two groups of lymph fistula rats were used, the control and the experimental rats. In the experimental rats, a phosphate-buffered taurocholate-stabilized emulsion containing 40 mumol [3H]triolein, 7.8 mumol of phosphatidylcholine, and 1 mg L-81 per 3 ml was infused at 3 ml/h for 8 h. This was then replaced by glucose-saline infusion for an additional 12 h. The control rats received the same lipid emulsion as the experimental rats, but without L-81 added, for 8 h. Lymph lipid was determined both by radioactivity and by glyceride-glycerol determination, and the apoA-I and apoA-IV concentrations were determined by rocket electroimmunophoresis assay. L-81 inhibited the rise in lymphatic lipid and apoA-IV output in the experimental rats after the beginning of lipid + L-81 infusion. Upon cessation of L-81 infusion, the mucosal lipid accumulated as a result of L-81 treatment was rapidly cleared into lymph as CM. This was associated with a marked increase in apoA-IV output; the maximal output was about 3 times that of the fasting level. There was a time lag of 4-5 h between the peak lymph lipid output and the peak lymph apoA-IV output during the unblocking phase in the experimental rats. There was also a comparable time lag between the maximal lipid and apoA-IV outputs in the control animals. Incorporation studies using [3H]leucine showed that apoA-IV synthesis was not stimulated during lipid + L-81 infusion, perhaps explaining the lack of increase in lymphatic A-IV secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
This study explored further the hypothesis that intestinal cells have two pathways for producing large triacylglycerol-rich lipoprotein particles. The hydrophobic surfactant Pluronic L-81 (L-81) inhibits formation of chylomicrons (containing triacylglycerol synthesized from dietary fatty acids and monoacylglycerol, through the monoacylglycerol pathway), but not formation of very-low-density lipoproteins. L-81 does not inhibit lymphatic lipid transport during infusion of egg phosphatidylcholine, whose fatty acid is processed through the alpha-glycerol phosphate pathway and is transported in lymph in very-low-density lipoproteins. Thus, the first part of this study tested whether L-81 cannot inhibit the alpha-glycerol phosphate pathway, and thus L-81 can only affect chylomicron lipid secretion. Intestinal lymph fistula rats were infused with a lipid emulsion containing [1-14C]oleic acid, but no monoacylglycerol, to ensure that the oleic acid will be channeled to the alpha-glycerol phosphate pathway. Experimental rats received 1 mg/h of L-81 in their emulsion whereas control rats lacked L-81. Lymphatic triacylglycerol output, measured both chemically and radioactively, was markedly suppressed in the experimental rats as compared to the controls. Thus, these data indicate that the reason why lipid transport was unaffected by L-81 when egg phosphatidylcholine was infused was not because of the pathway used for the resynthesis of triacylglycerol from phosphatidylcholine. In the second part of this study, we measured the appearance time for chylomicron (in control rats) and for very-low-density lipoprotein (in L-81-treated rats). The appearance time is defined as the time between placement of radioactive fatty acid into the intestinal lumen and the appearance of radioactive lipid in the central lacteal. The average appearance time for the control rats was 10.8 min, which was significantly shorter than the 16.2 min in the L-81-treated experimental rats. This difference in appearance time further supports the hypothesis that chylomicron and very-low-density lipoprotein are packaged separately in the enterocytes and only the formation of chylomicron is inhibited by L-81.  相似文献   

4.
The aim of this study was to investigate how the relationship between chylomicron and very-low-density lipoprotein (VLDL) transport of fatty acid into lymph was affected by the total amount of lipid transported via the intestinal lymphatics in the rat. Two different experimental conditions were employed. First, intestinal lymph fistula rats were infused with four different levels of [3H]oleic acid (15, 30, 60 and 120 mumol per h) at a constant rate for 8 h. Lymphatic transport of [3H]oleic acid via chylomicrons and VLDLs was measured in lymph collected during the seventh h. Within the dose range studied chylomicron increased exponentially, while the output in VLDL reached a plateau at a total lymph [3H]oleic acid output of approx. 60 mumol/h. A linear regression analysis of the ln(chylomicron/VLDL) versus the total output in lymph yielded a coefficient of correlation of 0.95. Second, we utilized the fact that intraduodenal infusion of the nonionic detergent Pluronic L-81 (L-81) inhibits chylomicron transport and that this inhibition is reversed by the cessation of L-81 infusion (unblocking). A linear regression analysis of the ln(chylomicron/VLDL) versus total lymph [3H]oleic acid output during the first 4 h of unblocking gave a coefficient of correlation of 0.79. Statistical analysis of the regression equations from the two experiments showed that for the same lymphatic [3H]oleic acid output, the chylomicron/VLDL ratio was significantly lower in the L-81 experiment, indicating that the relative rates of formation of chylomicron to VLDL were different under these two experimental conditions. However, the principal pattern was the same, i.e., chylomicron production increased, while VLDL production became saturated when the amount of oleic acid transported to the lymph was increased.  相似文献   

5.
Intestinal alkaline phosphatase (IAP) is one of the major sources of alkaline phosphatase in circulation. It is secreted into the intestinal lumen, serum, and lymph. After the ingestion of lipid, lymphatic alkaline phosphatase secretion increases significantly. We have found that the nonabsorbable fat olestra is unable to stimulate lymphatic alkaline phosphatase secretion. We also found that the hydrophobic surfactant Pluronic L-81, which blocks chylomicron formation, fails to inhibit this increase in lymphatic alkaline phosphatase secretion. These results suggest that it is the lipid uptake into the mucosa and/or reesterification to form triacylglycerols, but not the formation of chylomicrons, that is necessary for the stimulation of the secretion of alkaline phosphatase into the lymph.  相似文献   

6.
Glucagon-like peptide 1 (GLP-1) is a gastrointestinal hormone secreted in response to meal ingestion by enteroendocrine L cells located predominantly in the lower small intestine and large intestine. GLP-1 inhibits the secretion and motility of the upper gut and has been suggested to play a role in the "ileal brake." In this study, we investigated the effect of recombinant GLP-1-(7-36) amide (rGLP-1) on lipid absorption in the small intestine in intestinal lymph duct-cannulated rats. In addition, the effects of rGLP-1 on intestinal production of apolipoprotein (apo) B and apo A-IV, two apolipoproteins closely related to lipid absorption, were evaluated. rGLP-1 was infused through the jugular vein, and lipids were infused simultaneously through a duodenal cannula. Our results showed that infusion of rGLP-1 at 20 pmol.kg(-1).min(-1) caused a dramatic and prompt decrease in lymph flow from 2.22 +/- 0.15 (SE) ml/h at baseline (n = 6) to 1.24 +/- 0.06 ml/h at 2 h (P < 0.001). In contrast, a significant increase in lymph flow was observed in the saline (control) group: 2.19 +/- 0.20 and 3.48 +/- 0.09 ml/h at baseline and at 6 h of lipid infusion, respectively (P < 0.001). rGLP-1 also inhibited intestinal triolein absorption (P < 0.05) and lymphatic apo B and apo A-IV output (P < 0.05) but did not affect cholesterol absorption. In conclusion, rGLP-1 dramatically decreases intestinal lymph flow and reduces triglyceride absorption and apo B and apo A-IV production. These findings suggest a novel role for GLP-1 in lipid absorption.  相似文献   

7.
Studies were conducted in rats to determine if the increase in lymph triacylglycerol output on pre-feeding a 20% glyceryltrioleate diet (Mansbach, C.M., II and Arnold, A. (1986) Am. J. Physiol. 251, G263-269) was due to an increase in phosphatidylcholine output into bile. Rats who were fed chow or pre-fed the 20% fat diet were equipped with biliary and duodenal cannulas and infused with glucose-saline while bile was collected hourly. The next day a taurocholate-glyceryltrioleate infusion was given and bile collected for 5 h. Bile flow, bile acid, phosphatidylcholine and cholesterol output were greater in the chow fed group than controls during the 6 h of the glucose saline period. Outputs were low overnight. During the taurocholate-glyceryltrioleate infusion, bile flow, bile acid, phosphatidylcholine and cholesterol output were all greater in the fat pre-fed group than the chow fed controls. We conclude that fat pre-feeding profoundly influences biliary composition and flow. The 2-fold increase in biliary phosphatidylcholine output during duodenal lipid infusion offers a potential explanation for the increased delivery of triacylglycerol into the lymph in rats on a similar fat pre-feeding program.  相似文献   

8.
Chylomicrons produced by the human gut contain apolipoprotein (apo) B48, whereas very-low-density lipoproteins made by the liver contain apo B100. To study how these molecules function during lipid absorption, we examined the process as it occurs in apobec-1 knockout mice (able to produce only apo B100; KO) and in wild-type mice (of which the normally functioning intestine makes apo B48, WT). Using the lymph fistula model, we studied the process of lipid absorption when animals were intraduodenally infused with a lipid emulsion (4 or 6 micromol/h of triolein). KO mice transported triacylglycerol (TG) as efficiently as WT mice when infused with the lower lipid dose; when infused with 6 micromol/h of triolein, however, KO mice transported significantly less TG to lymph than WT mice, leading to the accumulation of mucosal TG. Interestingly, the size of lipoprotein particles from both KO and WT mice were enlarged to chylomicron-size particles during absorption of the higher dose. These increased-size particles produced by KO mice were not associated with increased apo AIV secretion. However, we found that the gut of the KO mice secreted fewer apo B molecules to lymph (compared with WT), during both fasting and lipid infusion, leading us to conclude that the KO gut produced fewer numbers of TG-rich lipoproteins (including chylomicron) than the wild-type animals. The reduced apo B secretion in KO mice was not related to reduced microsomal triglyceride transfer protein lipid transfer activity. We propose that apo B48 is the preferred protein for the gut to coat chylomicrons to ensure efficient chylomicron formation and lipid absorption.  相似文献   

9.
Discrimination between cholesterol and sitosterol for absorption in rats   总被引:3,自引:0,他引:3  
The intestinal absorption of cholesterol and sitosterol was compared in rats. The intragastric administration of a single emulsified lipid meal containing either 50 mg of [4-14C]cholesterol or [4-14C]sitosterol resulted in the lymphatic absorption of 18.2% and 0.42% of each sterol, respectively, in 6 hr. This difference was unaltered when the mucosal sterol load was equalized by reducing the cholesterol to 1 mg in the emulsified lipid meal while maintaining the same sitosterol load or when the physical state in the lumen was equalized by infusion of a micellar solution containing both sterols into bile-diverted intestine. Lymphatic cholesterol was 90% esterified compared to 12% for sitosterol. Both sterols were associated predominantly (greater than 70%) with the chylomicron fraction. Eighty percent of the chylomicron cholesterol was recovered as ester with the core lipids, while 77% of the sitosterol was recovered as free sterol with the chylomicron coat. In mucosal homogenates at 6 hr, sitosterol recovery was one-eleventh that of cholesterol. When [3H]cholesterol (10 mg) and [14C]sitosterol (10 mg) were co-administered in an emulsified intragastric lipid meal, sitosterol associated with the brush border isolated 2 hr later was one-fifth that of cholesterol. Similar differences were seen when brush border membranes were incubated in vitro with micellar solutions containing either 50 microM [3H]cholesterol or [14C]sitosterol and the relative uptake of each sterol was unaffected by micellar phospholipid type (egg yolk phospholipids, phosphatidylcholine, or phosphatidylethanolamine).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Chylomicrons promote intestinal absorption of lipopolysaccharides   总被引:1,自引:0,他引:1  
Recent data suggest that dietary fat promotes intestinal absorption of lipopolysaccharides (LPS) from the gut microflora, which might contribute to various inflammatory disorders. The mechanism of fat-induced LPS absorption is unclear, however. Intestinal-epithelial cells can internalize LPS from the apical surface and transport LPS to the Golgi. The Golgi complex also contains newly formed chylomicrons, the lipoproteins that transport dietary long-chain fat through mesenteric lymph and blood. Because LPS has affinity for chylomicrons, we hypothesized that chylomicron formation promotes LPS absorption. In agreement with our hypothesis, we found that CaCo-2 cells released more cell-associated LPS after incubation with oleic-acid (OA), a long-chain fatty acid that induces chylomicron formation, than with butyric acid (BA), a short-chain fatty acid that does not induce chylomicron formation. Moreover, the effect of OA was blocked by the inhibitor of chylomicron formation, Pluronic L-81. We also observed that intragastric triolein (TO) gavage was followed by increased plasma LPS, whereas gavage with tributyrin (TB), or TO plus Pluronic L-81, was not. Most intestinally absorbed LPS was present on chylomicron remnants (CM-R) in the blood. Chylomicron formation also promoted transport of LPS through mesenteric lymph nodes (MLN) and the production of TNFalpha mRNA in the MLN. Together, our data suggest that intestinal epithelial cells may release LPS on chylomicrons from cell-associated pools. Chylomicron-associated LPS may contribute to postprandial inflammatory responses or chronic diet-induced inflammation in chylomicron target tissues.  相似文献   

11.
Many gastrointestinal meal-related signals are transmitted to the central nervous system via the vagus nerve and thereby control changes in meal size. The c-Fos-positive neuron has been used as a marker of neuronal activation after lipid meals to examine the contribution of a selective macronutrient on brain neurocircuit activity. In rats fed Intralipid, the c-Fos-positive neurons were highly stimulated in the nucleus of the solitary tract (NTS) and in the hypothalamus, including the paraventricular nucleus (PVN), arcuate nucleus of the hypothalamus (ARC), and ventromedial hypothalamus at 4 h lipid feeding. However, c-Fos-like immunoreactivity was markedly attenuated in these brain regions when chylomicron formation/secretion was blocked by Pluronic L-81. After lymph was diverted from the lymph cannulated animals, the rats had a lower number of c-Fos-positive cells in the NTS and ARC. In contrast, the rats had higher c-Fos-positive neurons in PVN. The present study also revealed that c-Fos-positive neurons induced by feeding of Intalipid were abolished by CCK type 1 receptor antagonist, Lorglumide. We conclude that the formation and/or secretion of chylomicron are critical steps for initiating neuronal activation in the brain.  相似文献   

12.
Pluronic L-81 (L-81), a non-ionic hydrophobic surfactant, is a powerful inhibitor of the secretion of lipid-transporting chylomicrons from intestinal epithelial cells to lymph. Since the other major organ that secretes lipoproteins into the circulation is the liver, whose principal lipid secretory product is very low density lipoprotein (VLDL), we tested the hypothesis that L-81 will also inhibit hepatic lipid secretion. Rats were fasted so that they had little lipid input from the intestine. We then administered Triton WR-1339 (tyloxapol) intravenously to block peripheral utilization of VLDL, causing plasma lipids to rise rapidly. Some animals were also given L-81 intravenously to test whether the L-81 would retard the tyloxapol-induced rise in plasma lipids. Administration of tyloxapol alone (250 mg/kg) increased plasma triglyceride, phospholipid and cholesterol concentrations considerably. Simultaneous administration of a small dose of L-81 (6 mg/kg) markedly reduced the rise in plasma triglyceride, particularly in the first hour (by 45%). L-81 also diminished the rise in plasma phospholipid and cholesterol, but to a lesser extent (30%). In the fasting rat, most of the plasma triglyceride is in VLDL; therefore, L-81 probably acts by decreasing the secretion of hepatic VLDL. Thus, Pluronic L-81 may be a useful tool for examining the secretion and metabolism of hepatic lipoproteins, in particular, VLDL.  相似文献   

13.

Background

A small fraction of dietary protein survives enzymatic degradation and is absorbed in potentially antigenic form. This can trigger inflammatory responses in patients with celiac disease or food allergies, but typically induces systemic immunological tolerance (oral tolerance). At present it is not clear how dietary antigens are absorbed. Most food staples, including those with common antigens such as peanuts, eggs, and milk, contain long-chain triglycerides (LCT), which stimulate mesenteric lymph flux and postprandial transport of chylomicrons through mesenteric lymph nodes (MLN) and blood. Most dietary antigens, like ovalbumin (OVA), are emulsifiers, predicting affinity for chylomicrons. We hypothesized that chylomicron formation promotes intestinal absorption and systemic dissemination of dietary antigens.

Methodology/Principal Findings

Absorption of OVA into MLN and blood was significantly enhanced when OVA was gavaged into fasted mice together with LCT compared with medium-chain triglycerides (MCT), which do not stimulate chylomicron formation. The effect of LCT was blocked by the addition of an inhibitor of chylomicron secretion, Pluronic L-81. Adoptively transferred OVA-specific DO11.10 T-cells proliferated more extensively in peripheral lymph nodes when OVA was gavaged with LCT than with MCT or LCT plus Pluronic L-81, suggesting that dietary OVA is systemically disseminated. Most dietary OVA in plasma was associated with chylomicrons, suggesting that these particles mediate systemic antigen dissemination. Intestinal-epithelial CaCo-2 cells secreted more cell-associated, exogenous OVA when stimulated with oleic-acid than with butyric acid, and the secreted OVA appeared to be associated with chylomicrons.

Conclusions/Significance

Postprandial chylomicron formation profoundly affects absorption and systemic dissemination of dietary antigens. The fat content of a meal may affect immune responses to dietary antigens by modulating antigen absorption and transport.  相似文献   

14.
Background & aimsDietary triglycerides (TG) retained in the intestine after a meal can be mobilized many hours later by glucagon-like peptide-2 (GLP-2) in humans and animal models, despite the well-documented absence of expression of the GLP-2 receptor on enterocytes. In this study, we examined the site of GLP-2 action to mobilize intestinal lipids and enhance chylomicron production.MethodsIn mesenteric lymph duct-cannulated rats, we assessed GLP-2-stimulated lymph flow rate, TG concentration, TG output, and apoB48 abundance 5 h after an intraduodenal lipid bolus, in the presence of a validated GLP-2 antagonist or vehicle. Additionally, the same GLP-2-stimulated parameters were examined in the presence or absence of cis-Golgi disruption by Brefeldin A (BFA).ResultsCompared to placebo, GLP-2 administration increased lymph flow by 2.8-fold (P < 0.001), cumulative lymph volume by 2.69-fold (P < 0.001) and total TG output 2-fold (P = 0.015). GLP-2 receptor antagonism markedly diminished GLP-2's ability to stimulate lymph flow, cumulative lymph volume and total TG output, demonstrating the dependence of GLP-2 stimulation of lymph flow and TG output on its receptor activation. In contrast, disruption of the cis-Golgi apparatus with Brefeldin A did not diminish the GLP-2-response of lymph flow i.e., increased lymph flow by 2.7-fold (P = 0.001), lymph volume by 2.9-fold (P = 0.001), and total TG output i.e., increased by 2.5-fold (P = 0.003).ConclusionsGLP-2 mobilizes enteral lipid at a site distal to the Golgi, acting via its receptor. Since GLP-2 receptors are not expressed on enterocytes, GLP-2 likely mobilizes intestinal lipid residing extracellularly, either in the lamina propria or in the lymphatics.  相似文献   

15.
Inhibitory action of gemfibrozil on cholesterol absorption in rat intestine   总被引:7,自引:0,他引:7  
This study was designed to determine whether gemfibrozil inhibits intestinal lipid absorption. Male Sprague-Dawley rats received an oral dose of 30 mg gemfibrozil/kg body weight for 14 days. Mesenteric lymph cannulation was performed, and a lipid infusion containing 40 micromol/h (35.4 mg/h) of radiolabeled triolein and 2.74 micromol/h (1.06 mg/h) of radiolabeled cholesterol with the addition of 1 mg/h of gemfibrozil was infused intraduodenally at a rate of 3 ml/h for 8 h. The lymph was collected, and the radioactivity levels of the lumen and gut mucosa were measured after the infusion. Lymph cholesterol transport was depressed in gemfibrozil-treated rats, in terms of mass measurements as well as radioactivity in a lesser degree. More radioactive cholesterol remained in the proximal portion of the intestinal lumen and mucosa in the treated rats than in the control rats. More radioactive triglycerides also remained in the proximal intestinal lumen of treated rats, although no difference in lymphatic triglyceride transport was observed between the groups. A significant portion of the radioactive cholesterol remained in the lumen in the gemfibrozil-treated rats. Gemfibrozil increased biliary cholesterol excretion. Thus, this study shows that gemfibrozil inhibits cholesterol absorption in rat intestine.  相似文献   

16.
The kinetics of chylomicron-TG removal were studied using an experimental method which allows measurements to be made under optimal physiological conditions. Chylomicrons, labeled with palmitic acid-(14)C, were constantly infused at a rate of 0.5 mg total lipid per min into chronically cannulated, unanesthetized, unrestrained rats which had been fasted for 18 hr. Serial blood samples were withdrawn from an arterial cannula during a 20 min infusion period and for 10 min following the infusion. Plasma lipoproteins were separated into two fractions in the ultracentrifuge, and the lipids were extracted. Radioactivity in the low-density fraction (d<1.006) was taken to represent chylomicron-TG radioactivity. Using this method we studied the influence of anesthesia on the kinetics of removal of chylomicron-TG. The following three phases of the radioactivity-time curve were plotted: (a) the increase in (14)C during infusion of chylomicrons, (b) the steady-state phase during the infusion, and (c) the decay of (14)C after chylomicron infusion was stopped. The values for the anesthetized rats failed to reach a steady-state phase during the course of the experiment. From the disappearance of (14)C following the end of the infusion, the apparent half time of removal of chylomicron-TG was estimated to be 2.8 +/- 0.37 min in unanesthetized rats, 4.5 +/- 0.37 min in rats anesthetized with sodium pentobarbital, and 4.4 +/- 0.44 min in rats anesthetized with halothane. Thus, two anesthetics with different physical properties markedly slowed the removal of chylomicron-TG from the circulation. The reduced rate may have resulted from alterations in cardiac output or distribution of blood flow induced by the anesthetic agents.  相似文献   

17.
Monospecific antisera were produced to two chylomicron apoproteins (apoB, apoA-I) and utilized for indirect immunofluorescent localization of these apoproteins within rat intestinal epithelium during normal and impaired lipid absorption. Isolated intestinal epithelial cells prepared after different periods of lipid absorption from in situ intestinal segments revealed a rapid increase in fluorescence for both apoproteins that filled the entire apical portion of the cell. Prolonged lipid absorption for as long as 5 hr demonstrated sustained immunofluorescence and gave no indication of a depletion of the intestinal mucosa for either apoprotein during normal lipid absorption. [(3)H]Leucine incorporation into mesenteric lymph chylomicron apoproteins showed a linear decrease in specific activity of total chylomicron protein as well as apoB over 4 hr of a continuous lipid infusion indicating sustained active apoprotein synthesis during prolonged lipid absorption. Acetoxycloheximide, a potent inhibitor of protein synthesis, was employed to determine the dynamics of chylomicron apoproteins during an experimental condition of impaired lipid absorption. In animals with inhibited protein synthesis, fluorescence for both apoproteins was present early in the course of lipid absorption; however, at 60 min after the onset of lipid absorption, fluorescence for both apoproteins was absent. Fluorescence for both apoproteins returned during the recovery of protein synthesis. The present studies have confirmed previous results that localized two chylomicron apoproteins within intestinal epithelial cells. The present studies extend these observations and disclose a rapid and sustained synthesis of these apoproteins during prolonged chylomicron formation. During an experimental condition of impaired protein synthesis there was a marked reduction in the mucosal content of both apoA-I and apoB. These results are the first demonstration of impaired mucosal apoprotein synthesis during an experimental model of impaired lipid absorption.  相似文献   

18.
Previously, we have shown that green tea extract (GTE) lowers the intestinal absorption of lipids and lipophilic compounds in rats. This study was conducted to investigate whether GTE inhibits the intestinal absorption and biliary secretion of benzo[a]pyrene (BaP), an extremely lipophilic potent carcinogen, present in foods as a contaminant. Male rats with lymph or bile duct cannula were infused at 3.0 ml/h for 8 h via a duodenal catheter with lipid emulsion containing (14)C-BaP with or without GTE in PBS buffer. Lymph and bile were collected hourly for 8 h. The (14)C-radioactivities in lymph, bile and intestine were determined and expressed as % dose infused. Results showed that GTE drastically lowered the lymphatic absorption of (14)C-BaP (7.6±3.2% in GTE-infused vs. 14.4±2.7% dose/8 h in control rats), with a significantly higher amount of (14)C-radioactivity present in the small intestinal lumen and cecum in rats infused with GTE. GTE also markedly increased the hourly rate (3.9±0.1% dose/h in GTE-infused vs. 3.0±0.1% dose/h in control rats) and the total biliary secretion of (14)C-BaP (31.5±0.8% dose/8 h in GTE-infused vs. 24.3±0.4% dose/8 h in control rats). The findings provide first direct evidence that GTE has a profound inhibitory effect on the intestinal absorption of BaP and promotes the excretion of absorbed BaP via the biliary route. Further studies are warranted to investigate whether green tea could be recommended as a dietary means of ameliorating the toxicity and carcinogenic effect of BaP.  相似文献   

19.
Previously, we have shown that the lymphatic absorption of retinol is significantly decreased in rats fed a low zinc diet. This study was conducted to determine whether the absorption of beta-carotene also is altered in zinc-deficient male rats. The absorption of beta-carotene was estimated by determining the amount of retinol appearing in the mesenteric lymph during intraduodenal infusion of beta-carotene. One group of rats was fed the AIN-93G diet but low in zinc (LZ; 3 mg/kg) and the other was fed the same diet adequate in zinc (AZ; 30 mg/kg). The LZ and AZ rats were trained to meal feed equal amounts of the diets twice daily. At 6 weeks, each rat with lymph cannula was infused via an intraduodenal catheter at 3 ml/h for 8 h with a lipid emulsion containing 65.0 nM beta-carotene, 565.1 microM triolein, 27.8 kBq 14C-triolein (14C-OA), 72 mg albumin, and 396 microM Na-taurocholate in 24 ml PBS (pH 6.7). The lymphatic output of retinol over the 8-h period was significantly lower in LZ rats than in AZ rats. The absorption of 14C-OA also was significantly lower in LZ rats. No significant differences were observed between groups in intestinal beta-carotene 15,15'-dioxygenase, retinal reductase, and retinal oxidase activities. The findings demonstrate that low zinc intake or marginal zinc deficiency significantly lowers the absorption of beta-carotene as estimated by lymphatic retinol output. The results also indicate that the decrease in retinol output in LZ rats is not linked to defects in beta-carotene cleavage and subsequent conversion of retinal to retinol in the intestinal mucosa. This study suggests that zinc status is an important factor determining the intestinal absorption of beta-carotene and hence the nutritional status of vitamin A.  相似文献   

20.
Diazepam was administered by infusion to three groups of rats with an induced differentiated total lipid content in their lymph (unfed, fed, oil-fed) and its lymph/blood concentration ratios in the steady state were determined. Ratio values were highest in the group with the highest lymph lipid content (the oil-fed group, 2.20 +/- 0.08) and fell significantly in the other groups (fed group 1.46 +/- 0.09, unfed group 1.15 +/- 0.05). The areas under the blood and lymph concentration curves after the intravenous (i.v.) and intraduodenal (i.d.) administration of diazepam were used to determine absolute (F) and lymphatic (FL) bioavailability. The F value in the blood can be raised by increasing the amount of lipids, whereas in the lymph, under the same conditions, it falls. During the i.v. and i.d. administration of diazepam, FL always rises with an increase in the amount of lipids in the lymph. The role played by the lymphatic system in total diazepam absorption was determined from the experimental results of its i.d. administration. The absolute values are very low (0.043-0.316%), but are significantly influenced by the presence of lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号