首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacillus circulans strain YUS-2 was isolated as the strongest antioxidant-producer in fermentation of sesame oil cake (SOC, defatted residue yielded from sesame seed oil production). Two major strong antioxidants from fermented SOC were purified and identified as known sesaminol triglucoside and sesaminol diglucoside, however, our results demonstrated that the fermentation process with B. circulans YUS-2 was highly effective to gain the extraction efficiency of the sesaminol glucosides.  相似文献   

2.
Sesaminol is one component of sesame oil and has been widely used as the stabilizer to extend the storage period of food oil in China. In this study, we tried to investigate the antioxidant activity of sesaminol on rat pheochromocytoma (PC12) cells oxidative damaged by H2O2. Cell viability, LDH level and apoptosis of the PC12 cells were assayed after treatment with sesaminol for 3 h and exposure to H2O2. Furthermore, superoxide (SOD), catalase (CAT), glutathione peroxidase (GSH‐Px) and intracellular ROS were assayed after exposure of the PC12 cells to H2O2. The results showed that pre‐treatment with sesaminol prior to H2O2 exposure significantly elevated cell survival rate and SOD, CAT and GSH‐Px activity. Meanwhile, sesaminol declined the secreted LDH level, apoptosis rate and ROS level of H2O2 exposed cells. Thus, sesaminol may protect PC12 against oxidative injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The role of sesame oil as part of the carbon source on growth and cephalosporin C production byCephalosporium acremonium was studied in shake-flask fermentation. The growth and antibiotic production were maximum on the fifth and sixth day, respectively, irrespective of the presence of sesame oil. Sesame oil enhanced cephalosporin C production by 54%. Analysis of fatty acid profile indicated that C18∶1, C18∶2 and C18∶3 are the major fatty acids inC. acremonium. The percentage of C18∶2 was higher in the culture grown with sesame oil.  相似文献   

4.
Kang MH  Naito M  Sakai K  Uchida K  Osawa T 《Life sciences》2000,66(2):161-171
We investigated the antioxidant properties of sesaminol, a major component of sesame oil, on the oxidative modification of human low-density lipoprotein (LDL) in vitro. Sesaminol inhibited the Cu2+-induced lipid peroxidation in LDL in a concentration-dependent manner with an IC50 36.0 +/- 10.0 nM. Sesaminol was a more effective scavenger than either alpha-tocopherol or probucol in reducing the peroxyl radicals derived from 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) in aqueous solution. In addition, as determined by the secondary products of lipid peroxidation identified by using immunochemical methods, sesaminol completely inhibited the formation of 4-hydroxy-nonenal (4-HNE)- and malondialdehyde (MDA)-adducts in a concentration-dependent manner. Probucol and alpha-tocopherol at the same concentration exhibited a lesser inhibitory effect. Our findings suggest that sesaminol is a potentially effective antioxidant that can protect LDL against the oxidation.  相似文献   

5.
Sesame (Sesamum indicum) seeds contain a large number of lignans, phenylpropanoid‐related plant specialized metabolites. (+)‐Sesamin and (+)‐sesamolin are major hydrophobic lignans, whereas (+)‐sesaminol primarily accumulates as a water‐soluble sesaminol triglucoside (STG) with a sugar chain branched via β1→2 and β1→6‐O‐glucosidic linkages [i.e. (+)‐sesaminol 2‐O‐β‐d ‐glucosyl‐(1→2)‐O‐β‐d ‐glucoside‐(1→6)‐O‐β‐d ‐glucoside]. We previously reported that the 2‐O‐glucosylation of (+)‐sesaminol aglycon and β1→6‐O‐glucosylation of (+)‐sesaminol 2‐O‐β‐d ‐glucoside (SMG) are mediated by UDP‐sugar‐dependent glucosyltransferases (UGT), UGT71A9 and UGT94D1, respectively. Here we identified a distinct UGT, UGT94AG1, that specifically catalyzes the β1→2‐O‐glucosylation of SMG and (+)‐sesaminol 2‐O‐β‐d ‐glucosyl‐(1→6)‐O‐β‐d ‐glucoside [termed SDG(β1→6)]. UGT94AG1 was phylogenetically related to glycoside‐specific glycosyltransferases (GGTs) and co‐ordinately expressed with UGT71A9 and UGT94D1 in the seeds. The role of UGT94AG1 in STG biosynthesis was further confirmed by identification of a STG‐deficient sesame mutant that predominantly accumulates SDG(β1→6) due to a destructive insertion in the coding sequence of UGT94AG1. We also identified UGT94AA2 as an alternative UGT potentially involved in sugar–sugar β1→6‐O‐glucosylation, in addition to UGT94D1, during STG biosynthesis. Yeast two‐hybrid assays showed that UGT71A9, UGT94AG1, and UGT94AA2 were found to interact with a membrane‐associated P450 enzyme, CYP81Q1 (piperitol/sesamin synthase), suggesting that these UGTs are components of a membrane‐bound metabolon for STG biosynthesis. A comparison of kinetic parameters of these UGTs further suggested that the main β‐O‐glucosylation sequence of STG biosynthesis is β1→2‐O‐glucosylation of SMG by UGT94AG1 followed by UGT94AA2‐mediated β1→6‐O‐glucosylation. These findings together establish the complete biosynthetic pathway of STG and shed light on the evolvability of regio‐selectivity of sequential glucosylations catalyzed by GGTs.  相似文献   

6.
Abstract

Response surface methodology (RSM) was employed to enhance the production of a thermostable alkaline protease from Bacillus circulans. Significant influences of peptone, yeast extract, and glucose on protease production were noted with a one-variable-at-a-time optimization strategy. Then, a full factorial central composite design (CCD) was applied to study the effects of glucose, peptone, and yeast extract to determine the optimal concentrations of these compounds for protease production by B. circulans under shake flask fermentation conditions. The statistical reliability and significance of the model was validated by an F-test for analysis of variance (ANOVA); enzyme production was improved significantly under optimized conditions. The enzyme was purified by ammonium sulphate fractionation, and gel filtration chromatography. Maximum enzyme activity was observed at 60°C temperature, and at pH 10. Alkaline protease from B. circulans showed excellent compatibility and stability in the presence of commercial detergents like Ariel, Surf Excel, Tide, Rin, Nirma, Wheel, and Doctor and showed excellent blood destaining effectiveness with commercial detergents.  相似文献   

7.
A cycloisomaltooligosaccharide (CI; cyclodextran) production system was developed using a Bacillus subtilis expression system for the cycloisomaltooligosaccharide glucanotransferase (CITase) gene. The CITase gene of Bacillus circulans T-3040, along with the α-amylase promoter (PamyQ) and amyQ signal sequence of Bacillus amyloliquefaciens, was cloned into the Bacillus expression vector pUB110 and subsequently expressed in B. subtilis strain 168 and its alkaline (aprE) and neutral (nprE) protease-deficient strains. The recombinant CITase produced by the protease-deficient strains reached 1 U/mL in the culture supernatant within 48 h of cultivation, which was approximately 7.5 times more than that produced by the industrial CITase-producing strain B. circulans G22-10 derived from B. circulans T-3040. When aprE- and nprE-deficient B. subtilis 168 harboring the CITase gene was cultured with 10% dextran 40 for 48 h, 17% of the dextran in the culture was converted to CIs (CI-7 to CI-12), which was approximately three times more than that converted by B. circulans G22-10 under the same dextran concentration. The B. subtilis host–vector system enabled us to produce CIs by direct fermentation of dextran along with high CITase production, which was not possible in B. circulans G22-10 due to growth inhibition by dextran at high concentrations and limited production of CITase.  相似文献   

8.
Oil palm (Elaeis guineensis Jacq.) crops are expanding rapidly in the tropics, with implications for the global carbon cycle. Little is currently known about soil organic carbon (SOC) dynamics following conversion to oil palm and virtually nothing for conversion of grassland. We measured changes in SOC stocks following conversion of tropical grassland to oil palm plantations in Papua New Guinea using a chronosequence of plantations planted over a 25‐year period. We further used carbon isotopes to quantify the loss of grassland‐derived and gain in oil palm‐derived SOC over this period. The grassland and oil palm soils had average SOC stocks of 10.7 and 12.0 kg m?2, respectively, across all the study sites, to a depth of 1.5 m. In the 0–0.05 m depth interval, 0.79 kg m?2 of SOC was gained from oil palm inputs over 25 years and approximately the same amount of the original grass‐derived SOC was lost. For the whole soil profile (0–1.5 m), 3.4 kg m?2 of SOC was gained from oil palm inputs with no significant losses of grass‐derived SOC. The grass‐derived SOC stocks were more resistant to decrease than SOC reported in other studies. Black carbon produced in grassfires could partially but not fully account for the persistence of the original SOC stocks. Oil palm‐derived SOC accumulated more slowly where soil nitrogen contents where high. Forest soils in the same region had smaller carbon stocks than the grasslands. In the majority of cases, conversion of grassland to oil palm plantations in this region resulted in net sequestration of soil organic carbon.  相似文献   

9.
Aim: Modelling and optimization of fermentation factors and evaluation for enhanced alkaline protease production by Bacillus circulans. Methods and Results: A hybrid system of feed‐forward neural network (FFNN) and genetic algorithm (GA) was used to optimize the fermentation conditions to enhance the alkaline protease production by B. circulans. Different microbial metabolism regulating fermentation factors (incubation temperature, medium pH, inoculum level, medium volume, carbon and nitrogen sources) were used to construct a ‘6‐13‐1’ topology of the FFNN for identifying the nonlinear relationship between fermentation factors and enzyme yield. FFNN predicted values were further optimized for alkaline protease production using GA. The overall mean absolute predictive error and the mean square errors were observed to be 0·0048, 27·9, 0·001128 and 22·45 U ml?1 for training and testing, respectively. The goodness of the neural network prediction (coefficient of R2) was found to be 0·9993. Conclusions: Four different optimum fermentation conditions revealed maximum enzyme production out of 500 simulated data. Concentration‐dependent carbon and nitrogen sources, showed major impact on bacterial metabolism mediated alkaline protease production. Improved enzyme yield could be achieved by this microbial strain in wide nutrient concentration range and each selected factor concentration depends on rest of the factors concentration. The usage of FFNN–GA hybrid methodology has resulted in a significant improvement (>2·5‐fold) in the alkaline protease yield. Significance and Impact of the Study: The present study helps to optimize enzyme production and its regulation pattern by combinatorial influence of different fermentation factors. Further, the information obtained in this study signifies its importance during scale‐up studies.  相似文献   

10.
Aim: To report the growth of glucosidase and phospholipase positive bacteria on agar Listeria according to Ottaviani and Agosti (ALOA) different from Listeria monocytogenes, Listeria ivanovii and Bacillus cereus. Methods and Results: Raw water‐buffalo milk was analysed according to EN ISO 11290. Streaking of Fraser broth on ALOA resulted in green colonies with an opaque halo after 48 h at 30°C. Colonies were transferred onto Tryptone soya yeast extract agar and showed cultural characteristics atypical for L. monocytogenes. Results of confirmation tests according to EN ISO 11290 method: negative haemolysis test, weak positive camp test in correspondence with Staphylococcus aureus, no fermentation of rhamnose, fermentation of xylose. Gram staining showed tapered, curved, Gram‐positive rods with subterminal to terminal ellipsoidal spores, 0·5–0·7 μm diameter 4–5 μm. API 50CH CHB kit (99·9% percentage of identification) and the sequence of the 833 bp PCR product (portion of 16S rRNA, generic primers 1492‐r; p27‐f) showed 97% identity with Bacillus circulans ATCC 4513 (GenBank AY724690 ). Conclusions: Some B. circulans strains can grow on ALOA, according to ISO 11290, confirmation tests readily differentiate B. circulans from L. monocytogenes. Significance and Impact of the Study: The different morphology of the colonies must be kept in mind to select true L. monocytogenes for confirmation test and to avoid overestimation of L. monocytogenes count.  相似文献   

11.
  • Sesame (Sesamum indicum L.; Pedaliaceae) is a commercially valuable oilseed crop with high oil content. Its small genome size favours the genomic analysis of key biological processes, such as oil synthesis and metabolism. However, the 13 chromosome pairs of sesame have not been characterised because of technological limitations and their small size.
  • We constructed a BAC library comprising 57,600 BAC clones for sesame. The estimated genome coverage of the sesame BAC library was 13.8×. The successive double colour fluorescence in situ hybridisation (FISH) with bacterial artificial chromosomes (BACs) for sesame was established in this study.
  • Subsequently, the 13 sesame chromosome pairs were individually differentiated using 17 specific BACs for the first time. The schematic of the sesame chromosome set was drawn according to the chromosome relative length and relative position of the BAC signal. The cytogenetic characteristics of sesame chromosomes were also explored.
  • The results provide the technical background required for further cytogenetic map construction, genome assembly and localisation of the DNA sequence in sesame.
  相似文献   

12.
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha?1 after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ13C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ13C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ13C values with depth.  相似文献   

13.
The cellulose-hydrolyzing strains, Sphingomonas paucimobilis MK1 and Bacillus circulans MK2, were separated from soil and were grown together in a single culture plate. Growth B. circulans MK2 in liquid culture required symbiosis with S. paucimobilis MK1. Biological pretreatment with the combined strain suspension after the liquid culture improved enzymatic hydrolysis of office paper from municipal wastes. Sugar recovery by S. paucimobilis MK1 (51%) was 1.4 times higher than that of the untreated sample (30%) and in the strain combination with B. circulans MK2, recovery was further improved by 2.5 times (75%). The sugar recovery in maximum condition was enhanced up to 94% for office paper. Furthermore, biological pretreatment effects were confirmed for more than 1 day less time. In X-ray diffraction patterns for the crystallinity of cellulose in office paper changed after biological pretreatment, the crystallinity was increased in comparison to that in untreated paper. The mechanism of biological pretreatment effect was explained by the fact that the strain acted as an endoglucanase, which hydrolyzes amorphous areas randomly.  相似文献   

14.
Abstract

The aim of the present study was to formulate six different plant seed oils namely canola, cotton, flax, olive, sesame and soybean as emulsifiable concentrates. The composition of the formulation comprises at least one organic solvent, one surfactant and one plant oil. Physico-chemical properties of the formulated oils (emulsion stability test, cold stability and heat stability tests) were measured. The successfully emulsified oils were evaluated for nematicidal activity against Meloidogyne incognita infecting tomato plants under greenhouse conditions. Emulsified canola oil proved to be the most effective oil as a protectant against M. incognita infection to tomatoes followed by soybean, cotton, flax and sesame oil. In addition, employing a high rate of the tested emulsified oils gave higher activity in suppressing nematodes both in the soil and in tomato roots than using a low rate. Moreover, all tested formulated oils at both rates of application had no adverse effect on the growth of tomato plants except sesame oil which significantly decreased the shoot length when compared to the control. The prepared plant oils might be used as potential sources for sustainable eco-friendly botanical nematicides to protect plants from nematode attack.  相似文献   

15.
Lignans are a group of compounds consisting of dimers of phenyl propane units. They are found in diverse forms distributed in a variety of plants. Sesame lignans in particular are obtained from Sesamum indicum, a highly prized oilseed crop cultivated widely in many countries in the east. The plant is the main source of clinically important antioxidant lignans such as sesamin, sesamolin, sesaminol and sesamol. These lignans exhibit antihypertensive, anticancerous and hypocholesterolemic activities as well especially in humans due to which they have become compounds of tremendous research interest in recent times. Sesamin is synthesized from shikimic acid through phenylpropanoid pathway and metabolised into enterolignans which play a pivotal role in protection against several hormone related diseases. In this paper we present an overview of current status of research on sesame lignans with respect to the analytical methods employed, the biological activities and biosynthesis of sesame lignans.  相似文献   

16.
Sesame Utilization in China: New Archaeobotanical Evidence from Xinjiang. A cache of sesame (Sesamum indicum L.) seeds, discovered in the Thousand Buddha Grottoes at Boziklik, Turpan, China, dating to ca. 700 years before present (BP), is hard evidence of their use in China since that time. Morphological and anatomical features suggest a white sesame cultivar. The sizeable quantity unearthed implies that sesame was a valued commodity that could provision the monks and enrich the diet of ancient inhabitants as an oil source.  相似文献   

17.
The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.  相似文献   

18.
A gene encoding the β-amylase of Bacillus circulans was isolated from a lambda library and sequenced. The structural gene consists of a 1725 bp open reading frame encoding a polypeptide with a predicted molecular wt of 62830 Daltons. Two active forms of the enzyme were found when the gene was expressed In E. coli. The larger 60 kD form was approximately 3 kD larger than the mature β-amylase secreted from B. circulans, suggesting that processing of this protein is different between the two species. The smaller 49 kD form is also present at a low level in B. circulans and may result from proteolytic cleavage. The enzyme has a temperature optimum of 50°C. Two other genes, one encoding an α-amylase and one a pullulanase, were also isolated from the lambda library.  相似文献   

19.
Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.  相似文献   

20.
Sesame (Sesamum indicum L.) is an important oil crop renowned for its high oil content and quality. Recently, genome assemblies for five sesame varieties including two landraces (S. indicum cv. Baizhima and Mishuozhima) and three modern cultivars (S. indicum var. Zhongzhi13, Yuzhi11 and Swetha), have become available providing a rich resource for comparative genomic analyses and gene discovery. Here, we employed a reference‐assisted assembly approach to improve the draft assemblies of four of the sesame varieties. We then constructed a sesame pan‐genome of 554.05 Mb. The pan‐genome contained 26 472 orthologous gene clusters; 15 409 (58.21%) of them were core (present across all five sesame genomes), whereas the remaining 41.79% (11 063) clusters and the 15 890 variety‐specific genes were dispensable. Comparisons between varieties suggest that modern cultivars from China and India display significant genomic variation. The gene families unique to the sesame modern cultivars contain genes mainly related to yield and quality, while those unique to the landraces contain genes involved in environmental adaptation. Comparative evolutionary analysis indicates that several genes involved in plant‐pathogen interaction and lipid metabolism are under positive selection, which may be associated with sesame environmental adaption and selection for high seed oil content. This study of the sesame pan‐genome provides insights into the evolution and genomic characteristics of this important oilseed and constitutes a resource for further sesame crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号