首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

2.
Three different series of 1H-pyrrolopyrimidine-2,4-dione derivatives were designed and synthesized as ligands for the α(1)-adrenergic receptors (α(1)-ARs). A microwave-assisted protocol was developed in order to improve purity and yields of some final products. The majority of the synthesized compounds, tested in binding assays, displayed α(1)-AR affinities in the nanomolar range. Highest affinity values were found in derivatives 10b and 10c (K(i)=1.4 nM for both) whereas compound 10e was endowed with the best profile in term of α(1)-AR affinity (K(i)=2.71 nM) coupled with high selectivity towards 5-HT(1A) receptors (K(i) >10,000). Molecular docking studies were performed on human α(1)-ARs and human 5-HT(1A) receptors in order to rationalize the observed experimental affinity and selectivity; these computational studies helped to clarify molecular requirements for the design of high-selective α(1)-adrenergic ligands.  相似文献   

3.
αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin.  相似文献   

4.
Sugar beet α-glucosidase (SBG), a member of glycoside hydrolase family 31, shows exceptional long-chain specificity, exhibiting higher kcat/Km values for longer malto-oligosaccharides. However, its amino acid sequence is similar to those of other short chain-specific α-glucosidases. To gain structural insights into the long-chain substrate recognition of SBG, a crystal structure complex with the pseudotetrasaccharide acarbose was determined at 1.7 Å resolution. The active site pocket of SBG is formed by a (β/α)8 barrel domain and a long loop (N-loop) bulging from the N-terminal domain similar to other related enzymes. Two residues (Phe-236 and Asn-237) in the N-loop are important for the long-chain specificity. Kinetic analysis of an Asn-237 mutant enzyme and a previous study of a Phe-236 mutant enzyme demonstrated that these residues create subsites +2 and +3. The structure also indicates that Phe-236 and Asn-237 guide the reducing end of long substrates to subdomain b2, which is an additional element inserted into the (β/α)8 barrel domain. Subdomain b2 of SBG includes Ser-497, which was identified as the residue at subsite +4 by site-directed mutagenesis.  相似文献   

5.
AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine.  相似文献   

6.
Synthesis of the α- and γ-isomers of glutamylcystinylvaline   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

7.
A set of α-quaternary 3-chloro-1-hydroxyalkylphosphonates, analogues of fosfomycin and fosfonochlorin, some of which are new compounds, was synthesized. The compounds were screened for bioactivity against several clinical and standard microbial isolates. Some were found to have moderate activity. The activity was higher with phenyl protection of the phosphoryl ester groups and α-phenyl substitution. Compound 11 was as effective or more potent than fosfomycin or chloramphenicol against several Gram-negative bacteria as well as against some Gram-positive ones.  相似文献   

8.
Glycyrrhizic acid and its 30-methyl ester were conjugated with 2-amino-1,3,4,6-tetra-O-acetyl-2-deoxy--D-glucopyranose, 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl amine, 2,3,4-tri-O-acetyl--L-arabinopyranosyl amine, 2-acetamido-2-deoxy--D-glucopyranosyl amine, and -D-galactopyranosyl amine using N,N-dicyclohexylcarbodiimide and its mixtures with N-hydroxybenzotriazole. Structures of the conjugates were confirmed by IR, UV, 1H, and 13C NMR spectroscopy. The glycoconjugate with the residues of 2-acetamido-2-deoxy--D-glucopyranosyl amine in the carbohydrate part of its molecule exhibited antiviral activity (ID50 4 g/ml) toward the herpes simplex type 1 virus (HSV-1) in the VERO cell culture. Two compounds demonstrated anti-HIV-1 activity (50–70% inhibition of p24) in a culture of MT-4 cells at concentrations of 0.5–20 g/ml.  相似文献   

9.
Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids.  相似文献   

10.
The enzyme alpha-galactosidase offers potential to (i) eliminate possibly the flatus-inducing factor(s) in edible beans, (ii) eliminate raffinose during beet-sugar processing, and (iii) determine raffinose analytically. Accordingly, 20 genera of the order Actinomycetales Buchanan 1917 were tested for evidence of alpha-galactosidase activity. Test filtrates were prepared with a medium containing D-galactose and soybean meal. Enzyme activity was demonstrated through cellulose thin-layer chromatography. Of 123 strains tested, 28 produced extracellular alpha-galactosidase. Almost all were streptomycetes. Members of the genera Actinoplanes Couch 1950, Micromonospora varphiOrskov 1923, and Promicromonospora Krasil'nikov et al. 1961 also exhibited alpha-galactosidase activity. Additional tests led to the selection of five strains whose filtrates degraded melibiose, raffinose, and stachyose but not lactose and sucrose. Tests also were made with several soybean preparations.  相似文献   

11.
Abstract

A number of 2-substituted-5,6-dichloro-l-(α-L-arabinofuranosyl)benzimidazoles have been prepared by condensation of 2-bromo-5,6-dichlorobenzimidazole or 2,5,6-trichlorobenzimidazole with tetra-O-acetyl-L-arabinofuranose. 2-Alkylamino derivatives were prepared by a substitution of the 2-chloro group with the appropriate amines. All target compounds were evaluated for activity against HCMV and HSV-1. The 2-chloro and 2-bromo derivatives showed moderate activity against HCMV at non-cytotoxic concentrations.  相似文献   

12.
Nitroxide spin-labeled α-d-glycopyranosides were synthesized in good yield and in a highly stereoselective manner by reaction of per-O-benzyl-α-d-glycopyranosyl bromides with 2,2,6,6-tetramethyl-4-piperidinol under the bromide ion-catalyzed conditions devised by Lemieux etal. After hydrogenolysis, the deblocked intermidiates were oxidized to give the desired, spin-labeled α-d-glycopyranosides. Nitroxide spin-labeled α-d-glycopyranosides, as well as a β-maltoside, were synthesized by standard methods. The synthesis is also described of 2-amino-2-deoxy-d-glucose and -d-galactose derivatives having a spin label at C-2, and of the spin-labeled compound 1-[4-(β-d-galactopyranosyloxy)phenyl]-3-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl)-2-thiourea.  相似文献   

13.
The α-d-galactosidases of six Streptomyces strains were examined on their inducer susceptibility, substate specificity, and inhibitor susceptibility. In all strains examined, α-d-galactosidase was induced by d-galactose, but neither by d-fucose nor by l-arabinose. α-d-Fucosidase activity was always induced accompanying with α-d-galactosedase activity. β-l-Arabinosidase activity, however, was never observed. These α-d-galactosidases were purified to electrophoretically pure degree by successive ammonium sulfate and ethanol precipitation, and ion exchange and gel filtration chromatography. The purified preparations from six strains were different from each other in their chromatographic behaviors and in some physical properties, but they all showed strong α-d-fucosidase activity as well. The α-d-galactosidase activities were strongly inhibited by d-galactose and l-arabinose, but scarcely by d-fucose. On the other hand, their α-d-fucosidase activities were inhibited by d-fucose as well as by d-galactose and l-arabinose.  相似文献   

14.
15.
Synthetic routes toward the synthesis of some novel 1-(2,3,4-tri-O-acetyl-α-l-arabinopyranosyl)-azetidin-2-ones are described. Antimicrobial screening of three selected compounds revealed their activity against Bacillus subtilis and Escherichia coli.  相似文献   

16.
Abstract

The preparation of the unnatural nucleoside α-guanosine (1) has been achieved from readily available, literature precursors in ca. 6–9% overall yield. The key step, construction of the α-anomeric bond between the purine and the sugar, was accomplished by SN2 displacement of protected β-chlororibose derivative 2 with 2-amino-6-chloropurine. The optimal conditions for this reaction involved cesium carbonate in N-methylpyrrolidinone (α/β ratio: 7.7:1).  相似文献   

17.
Various α-isocyanocycloalkylideneacetamides were synthesized by the reaction of isocyanoacetamides with ketones and following by dehydration. These compounds were examined for their inhibitory activity against the germination of rice, cucumber and radish seeds, and for their herbicidal effects on rice, tomato and weed seedlings. Among them, α-isocyanocyclohexylidene-acetylpiperidine showed selective herbicidal activity against the broad-leaf plants.  相似文献   

18.
Both the lack of a credible malaria vaccine and the emergence and spread of parasites resistant to most of the clinically used antimalarial drugs and drug combination have aroused an imperative need to develop new drugs against malaria. In present work, α-pyranochalcones and pyrazoline analogs were synthesized to discover chemically diverse antimalarial leads. Compounds were tested for antimalarial activity by evaluation of the growth of malaria parasite in culture using the microtiter plate based SYBR-Green-I assay. The (E)-3-(3-(2,3,4-trimethoxyphenyl)-acryloyl)-2H-chromen-2-one (Ga6) turned out to be the most potent analog of the series, showing IC50 of 3.1 μg/ml against chloroquine-sensitive (3D7) strain and IC50 of 1.1 μg/ml against chloroquine-resistant field isolate (RKL9) of Plasmodium falciparum. Cytotoxicity study of the most potent compounds was also performed against HeLa cell line using the MTT assay. All the tested compounds showed high therapeutic indices suggesting that they were selective in their action against the malaria parasite. Furthermore, docking of Ga6 into active site of falcipain enzyme revealed its predicted interactions with active site residues. This is the first instance wherein chromeno-pyrazolines have been found to be active antimalarial agents. Further exploration and optimization of this new lead could provide novel, antimalarial molecules which can ward off issues of cross-resistance to drugs like chloroquine.  相似文献   

19.
Abstract

9-β-D-Arabinofuranosyldeazaadenines [1-deaza-araA (4a) and 3-deaza-araA (4b)] were prepared from 6-chloro-β-D-ribofuranosyl-1- (6a) and -3-deazapurine (6b), respectively. Synthesis of 2′-deoxy-1-deaza-adenosine (5a) from 1-deazaadenosine (6c) is also described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号