首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moisture distributions in spaghettis prepared at a maximum temperature of 50, 70, or 85?°C, designated as LT-, HT-, or VHT-spaghetti, respectively, and cooked to the average moisture content of 1.71?±?0.01?kg-H2O/kg-d.m., were measured. The moisture contents near the surface and at the center of the LT-spaghetti were lower and higher, respectively, than those of HT- and VHT-spaghetti.  相似文献   

2.
Controlled heating in a dry state greatly improved the surface functional properties of whey proteins (β-lactoglobulin and α-lactalbumin). Although whey proteins were completely insolubilized by heating at 80°C in an aqueous solution, their solubility was kept even after heating at 80°C in a dry state (7.5% moisture content) for 5 days. The surface hydrophobicity of α-lactalbumin was increased during the dry-heating, while that of β-lactoglobulin was decreased. In addition, the fluorescence spectra excited at 280 nm of dry-heated whey proteins suggested the significant conformational changes. High-performance gel chromatography showed that a considerable amount of soluble aggregates was formed in the dry-heated β-lactoglobulin, while a small amount of soluble aggregate was observed in the dry-heated α-lactalbumin. The foaming properties of dry-heated whey proteins were increased to about 3 times that of untreated proteins. The emulsifying properties of dry-heated whey proteins were also increased, compared to untreated proteins, although a slight decrease in the emulsion stability was observed in dry-heated β-lactoglobulin. The improvement of the surface properties seemed to come from the partial unfolding suitable for the formation of foam film and the entrapment of oil droplets.  相似文献   

3.
Moisture sorption isotherms for oat flour and rice flour were determined at 5, 23, and 45 °C using a gravimetric technique in an a w range of 0.08–0.98. The results obtained showed that, for a w values lower than around 0.75, in both flours, the sorption capacity decreased with increasing temperature, while the opposite behavior was observed at a w greater than this value. It was found that the experimental data in the water activity range considered were better represented by the four-parameter Peleg equation. The monolayer water contents for both materials were determined by the BET and GAB models. The net isosteric heats of sorption were estimated using the Clausius–Clapeyron equation. For both materials, the monolayer water content and the isosteric heat of sorption were found to decrease with increasing temperature and increasing moisture content, respectively.  相似文献   

4.
Molecular diffusion of solutes, like sucrose in the xanthan gum fermentation, is important in order to understand the complex behavior of mass transfer mechanisms during the process. This work was focused to determine the diffusion coefficient of sucrose, a carbon source for xanthan production, using similar sucrose and xanthan concentrations to those occurring in a typical fermentation. The diaphragm cell method was used in experimental determinations. The data showed that diffusion coefficient of sucrose significantly decreases when xanthan gum concentration increases. Theoretical and semiempirical models were used to predict sucrose diffusivity in xanthan solutions. Molecular properties and rheological behavior of the system were considered in the modeling. The models tested fitted well the behavior of experimental data and that reported for oxygen in the same system.List of Symbols A constant in eq. (5) - C pg cm–3 polymer concentration - D cm2 s–1 diffusivity - D ABcm2 s–1 diffusivity of A through liquid solvent - D APcm2 s–1 diffusivity of A in polymer solution - D AWcm2 s–1 diffusivity of A in water - D Pcm2 s–1 diffusivity of polymer in liquid solvent - E D gradient of the activation energy for diffusion - H P hydratation factor of the polymer in water (g of bound water/g of polymer) - K dyn sn cm–2 consistency index - K 1 constant in eq. (5) - K P overall binding coefficient [g of bound solute/cm3 of solution]/[g of free solute/cm3 of polymer free solution] - n flow behavior index - M Bg g mol–1 molucular weight of liquid solvent - M Pg g mol–1 molecular weight of the polymer - M Sg g mol–1 Molecular weight of polymer solution (= M BXB+MPXP) - R cm3 atm g mol–1 K–1 ideal gas law constant - T K absolute temperature - V Bcm3 g mol–1 molar volume of liquid solvent - V Pcm3 g mol–1 molar volume of polymer - V Scm3 g mol–1 molar volume of polymer solution - X B solvent molar fraction - X P polymer molar fraction - polymer blockage shape factor - P volume fraction of polymer in polymer solution - g cm–1 s–1 viscosity - ag cm–1 s–1 apparent viscosity of the polymer solution - icm3 g–1 intrinsic viscosity - 0 g cm–1 s–1 solvent viscosity - Pg cm–1 s–1 polymer solution viscosity - R relative viscosity (= / 0) - =0 g cm–1 s–1 viscosity of polymer solution obtained at zero shear rate - 0 g cm–3 water density  相似文献   

5.
Moisture sorption isotherms of figs with and without glucose syrup (at 20% and 40%, w/w) were determined at 5 °C, 25 °C, and 40 °C. A static gravimetric method was used under 0.11–0.84 water activity ranges for the determination of sorption isotherms that were found to be typical type ΙΙΙ for control sample. The inclusion of glucose syrup had significant effects on the sorption isotherms, and the moisture content of samples at each a w decreased with increasing temperature. The experimental data were fitted well with two-parameter Brunauer–Emmet–Teller, three-parameter Guggenheim–Anderson–de Boer, and four-parameter Peleg models that all had R 2 of greater than 0.99. The net isosteric heats of sorption were estimated using the Clausius–Clapeyron equation from the equilibrium data at different temperatures. It was found that the addition of glucose syrup significantly increased the amount of monolayer water and the isosteric heat of sorption. Both water activity and isosteric heat of sorption increased with glucose syrup level and the shape and status of sorption isotherms tend to change toward the typical sigmoid shape of most food systems.  相似文献   

6.
Rice flour was stored at 15 °C/9 months, at 35 °C/14 days, or dry-heated at 120 °C/20 min. The breadmaking properties baked with this rice flour/fresh gluten flour deteriorated. In addition, the rice flour was mixed with oil in water vigorously, and oil-binding ability was measured. Every rice flour subjected to storage or dry-heated at 120 °C showed higher hydrophobicity, owing to changes in proteins. Then, proteins in the stored rice flour were excluded with NaOH solution, and bread baked with the deproteinized rice flour showed the same breadmaking properties as unstored rice flour/fresh gluten flour. The viscoelasticity of wheat glutenin fraction decreased after the addition of dry-heated rice flour in a mixograph profile. DDD staining increased Lab in color meter, which suggested an increase in SH groups in rice protein. The increase in SH groups caused a reduction in wheat gluten protein resulting in a deterioration of rice bread quality.  相似文献   

7.
A model for the hydration behavior of human stratum corneum has been developed from measurements on in vitro samples isolated in a manner which minimized tissue treatment and trauma. Water sorption/desorption rate measurements as a function of water activity, temperature, and tissue integrity are reported. These data, together with thermodynamic data (infrared and nmr results reported earlier) are consistent with a model in which rapidly sorbed/desorbed water (ca. 0.5 mg water/mg stratum corneum) is associated with (“bound” by) the tissue, while slowly sorbed/desorbed “free” water (up to 12 mg water/mg stratum corneum) is kinetically restricted and probably intracellular in location. Both equilibrium water binding and desorption kinetic data suggest structural changes of this cellular water barrier upon hydration. Evidence for hysteresis in water sorption isotherms (reported by others) could not be reproduced.  相似文献   

8.
Low-frequency Raman spectra of the self-associates of guanosine monophosphates (GMPs) Na2 · 5′GMP, K2 · 5′GMP, Na2 · 3′GMP, and K2 · 3′GMP, and polyribonucleic acid K · poly(rG), were obtained. In acidic gels and dried fibers, GMP molecules are known to form helical stacks of hydrogen-bonded tetramers. Some low-frequency collective modes specific to the helically stacked structures were observed. We examined the dependence of these modes on counterions and water content. The lowest frequency mode at ca. 20 cm?1 is sensitive to the water content of the sample and is clearly visible in solid-state samples, so it works as a marker band of the environmental condition of the helices. The intensity and the peak frequency of this mode in solid-state samples depend on the helical structure and counterions. The broad peaks in the vicinity of 100 cm?1 are influenced by cations and are independent of water content.  相似文献   

9.
The effect of water content on the glass transition temperatures of a ready to eat cereal formulation was determined, as well as for its major components, oat flour, rice flour and an oat–rice flour blend, in the same ratio as they are present in the formulation. All samples were compression moulded at high temperature and were moisture conditioned in a 10–22% interval (dry basis). Glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC) and the main mechanical relaxation temperatures (Tα), measured by dynamic mechanical thermal analysis (DMTA). The relaxation temperatures taken at tan δ peaks, were found 20–30 °C larger than Tg. Besides the plasticizing effect of water adequately described by the Gordon–Taylor equation, no differences of Tg (and Tα) values between the major components were obtained at a constant moisture content. The Tg and Tα values of the RTE formulation were found to be about 30 °C lower than its components, a result which was attributed to the plasticizing effect of the minor components in the formulation (sugar and malt extract).  相似文献   

10.
M. Riederer  J. Schönherr 《Planta》1986,169(1):69-80
The sorption of 4-nitrophenol (4-NP) in enzymatically isolated cuticles ofLycopersicon esculentum fruits andFicus elastica leaves was studied as a function of temperature and solute concentration. Plots of the concentrations of 4-NP sorbed in the cuticle versus the equilibrium concentrations in the aqueous phase gave linear isotherms at low concentrations that tended to approach plateaus at higher sorbate concentrations ( 10 mmol·kg-1). At low concentrations of sorbed 4-NP, cuticles have sorptive properties similar to those of organic solvents which are able to form intermolecular hydrogen bonds, while at higher concentrations their solid nature becomes apparent. During sorption of 4-NP the cutin matrix swells and new sorption sites are successively formed. The partition coefficients of 4-NP in the system cuticle/buffer are functions of temperature and concentration. At high sorbate concentrations (approx. 1 mol·kg-1) they approach a value of 1. Different sorptive properties were observed for the cutin regions normally encrusted with soluble cuticular lipids (SCL) and those without SCL. Increasing temperature augmented the number of sorption sites in the cutin ofLycopersicon while no effect was observed withFicus. The changes of partial molar free energy (G o tr), enthalpy (H o tr), and entropy (S o tr) for the phase transfer of 4-NP also depended on sorbate concentration: H o tr and S o tr were negative and steeply decreased at high sorbate concentrations. This is due to solute-solute interactions replacing solute-cutin interactions at high concentrations resulting in solid precipitates of solute within the cutin matrix. This formation of ordered solid domaines starting from a small number of nonelectrolyte molecules interacting with the cutin is proposed as a model for the intracuticular deposition of SCL.Abbreviations CM cuticular membrane - MX polymer matrix membrane - 4-NP 4-nitrophenol - SCL soluble cuticular lipids  相似文献   

11.
以2009年吉林省德惠市中层黑土上进行了8a的田间定位试验小区土壤为研究对象,对免耕和秋翻两种耕作方式及玉米-大豆轮作和玉米连作两种种植方式下耕层有机碳进行分析,分别采用加权平均和分层两种方法计算最小限制水分范围(LLWR),用其评价不同耕作方式对土壤有机碳的影响.结果表明,免耕在玉米-大豆轮作和玉米连作下0-5 cm土壤有机碳含量分别比秋翻增加了15.2%和11.5% (P<0.05).采用加权平均法计算的LLWR值为0.148-0.166 cm3/cm3,不同耕作方式下玉米-大豆轮作的LLWR高于玉米连作且在两种种植方式下均表现出免耕小于秋翻的特点;利用分层法计算得到的LLWR值介于0.130-0.173 cm3/cm3之间,玉米-大豆轮作和玉米连作下免耕0-5 cm LLWR均显著小于秋翻,而5-30 cm LLWR数值免耕大于秋翻(P>0.05);玉米-大豆轮作下0-30 cm各层LLWR均高于玉米连作.由于LLWR可以评价不同耕作方式对土壤有机碳的影响,因此采用加权平均法计算的LLWR可以客观的反映不同耕作处理尤其是种植方式对土壤有机碳的影响;而采用分层法计算的LLWR则更清晰的刻画了土壤表层与亚表层固碳能力的差异.  相似文献   

12.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

13.
The use of rotating flow in an annulus is investigated as a means of enhancing the yield of glucose and xylose in the acid hydrolysis of cellulosic slurries. A one-dimensional model of such a cyclone reactor is developed for flow cases, co-current and counter-current flow. For the case of 250°C, 1% w/w acid, the one-dimensional model indicates an increase in the maximum glucose yield from 48.1% in a plug flow reactor to 69.3% in a co-current cyclone reactor, and up to 81.0% in a countercurrent cyclone reactor. The corresponding xylose yields are 91.6% for co-current operation and 97.7% for countercurrent operation. In the co-current case the maximum glucose and xylose yields do not occur at the same location in the reactor; however, in the countercurrent case they do. Although product yields are dramatically improved over those obtained in a plug flow reactor, the product concentrations are lower than would typically be obtained in a plug flow reactor.List of Symbols A cm2 cross sectional area perpendicular to radial flow - A c cm2 cross sectional area of slurry inlet - A c cm2 cross sectional area of steam inlet - A w cm2 cross sectional area of water inlet - C c concentration of cellulose as potential glucose (grams of potential glucose/cm3 of total stream) - C c * grams cellulose/cm3 of solids concentration of cellulose as potential glucose - C ginitial * grams glulose/cm3 of solids concentration of cellulose entering reactor - C g grams glucose/cm3 of total stream concentration of glucose - C g * grams glucose/cm3 of liquid stream concentration of glucose - C cinitial * grams cellulose/cm3 of liquid concentration of glucose entering reactor - C xn concentration of xylan as potential xylose (grams of potential xylose/cm3 of total stream) - C xs grams xyclose/cm3 of total stream concentration of nylose - d f dilution factor - dr cm radial increment - g cm/s2 gravitational acceleration - g * centrifugal acceleration proportionality constant - h cm height of cyclone reactor - j cm/s flux - K constant in general equation for vortex flow, Eq. (4.9) - k 1 1/s kinetic rate constant of cellulose hydrolysis - k a 1/s kinetic rate constant of xylan hydrolysis - k 2 1/s kinetic rate constant of glucose decomposition - k 2a 1/s kinetic rate constant of xylose decomposition - m vortex exponent - M steam g/s mass rate of steam addition at outer radius - M water g/s mass rate of cold water addition at outer radius - n cm3/s empirically determined settling parameter - Q cm3/s net volumetric flow in outward radial direction - Q tot cm3/s total volumetric flow through reactor - q c cm3/s volumetric flow of slurry feed - q s cm3/s volumetric flow of stream feed - q water cm3/s volumetric flow of cold water feed - r cm radial position - r c 1/s rate of cellulose hydrolysis - r g 1/s rate of glucose decomposition - r i cm inner radius - r o cm outer radius - r xn 1/s rate of xylan hydrolysis - r xs 1/s rate of xylose decomposition - s mom cm g/s2 inlet steam momentum - T bulk s bulk residence time in reactor - T °C reactor temperature - v c cm3/g specific volume of slurry feed - v s cm3/g specific volume of steam - v w cm3/g specific volume of water - V f cm/s velocity of liquid as a function of radius - V i cm/s inlet velocity - V s cm/s velocity of solids as a function of radius - V steam cm/s inlet steam velocity to cyclone - V cm/s terminal settling velocity - V q cm/s tangential velocity - w mom cm g/s2 water inlet momentum - Y grams product out/grams reactant in yield of product - solids volumetric fraction - f solids volumetric fraction in slurry feed - i initial solids volumetric fraction of slurry - Pi  相似文献   

14.
The effect of functional ingredients (carrot juice, whole soy flour, and whole kamut flour) and storage (180 days) on physicochemical properties (texture and amylopectin recrystallization) and water status (moisture content, water activity, ice melting peak thermal properties, and proton nuclear magnetic resonance (1H NMR) mobility) of tortillas has been studied. Different formulations significantly changed the parameters studied during storage resulting in larger changes than in the standard formulation (STD) that, therefore, may be considered the most stable product. The properties of whole kamut tortillas were very similar to those of standard sample while the formulation that contained carrot juice lead to an increased system rigidity observable both at macroscopic (textural properties), macromolecular (significantly reduced), and molecular (1H FID) levels. A decrease of moisture content, water activity, endothermic transition ~0 °C, and an increase of 1H NMR mobility (1H T2 pop A and C) were observed in soy-containing products [(soy enriched (SOY) and carrot, soy, and kamut (CSK)]. SOY and CSK had very low water activity, presented the highest 1H NMR molecular mobility and underwent the most marked changes during storage suggesting that water activity cannot be taken as a sole indicator of food stability as very important modifications occurred in tortillas at molecular level.  相似文献   

15.
The efficacy of entomomatogenic nematodes (Steinernema bicornutum Tallosi, Peters and Ehlers and/or Heterorhabditis indica LN2 Poinar, Karunakar and David) against the soil‐dwelling life stages of western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) was assessed under different moisture conditions in a commercial plant‐growing substrate in laboratory experiments. In the first experiment, both nematode species were tested at substrate moisture ranges of 67, 78, 88, or 95% relative moisture content, that were maintained before applying the nematodes at 100 or 400 infective juveniles (IJs) cm?2. In the second experiment, 10, 25, 50, 100, or 120 ml irrigation water, resulting in relative moisture contents of 72, 81, 90, 99%, or more than the saturation level of the substrate, respectively, was applied to the substrate. Heterorhabditis indica LN2 was applied either in 3 ml water and followed by irrigation, or by suspending the infective juveniles in the water amounts indicated above to apply the nematodes in higher volume. Results indicated that at the higher application rate, initial moisture content did not significantly affect the efficacy of H. indica LN2. On the other hand, increasing moisture content resulted in an improved efficacy of H. indica LN2 and S. bicornutum at lower and higher application rates, respectively. Similar thrips control levels of 44 and 60% at the lower and higher application rate of H. indica LN2, respectively, were obtained at 88% relative moisture content. In the second experiment, higher and statistically similar thrips mortality of 40 and 50% at lower and higher application rates of H. indica LN2, respectively, were obtained when the infective juveniles were applied in a high volume suspension of 100 ml, or when followed by irrigation with 25 ml water, resulting in both cases in 81% relative moisture content. Generally, efficacies of the nematodes for thrips control can be improved by using an appropriate moisture content and/or post‐application irrigation. Thus, the high nematode application rates required for successful F. occidentalis control can be partly attributed to substrate moisture content and/or post‐application irrigation.  相似文献   

16.
Akhter  J.  Mahmood  K.  Tasneem  M.A.  Naqvi  M.H.  Malik  K.A. 《Plant and Soil》2003,249(2):263-269
Water-use efficiency (WUE) of Leptochloa fusca (L.) Kunth (Kallar grass) and Sporobolus arabicus Boiss. was determined under different soil moisture regimes. Plants grown in lysimeters were subjected to three soil moisture regimes, viz. well-watered (100%), medium-watered (75%), and low-watered (50%) of total available water (TAW). The soil moisture was restored on alternate days by adding the required volume of water on the basis of neutron moisture meter readings taken from neutron access tubes installed in each lysimeter. The grasses were harvested after suitable intervals (4 months) to obtain maximum biomass. Leaf samples collected at each harvest were analyzed for carbon-isotope discrimination (13C) with an isotope ratio (13C/12C) mass spectrometer. Results indicated significant differences in WUE of both grasses subjected to different water regimes. Sporobolus arabicus showed higher WUE than Kallar grass. However, Kallar grass showed better value of yield response factor (k y = 0.649) compared with Sporobolus (k y = 1.06) over the entire season. The data confirm that these grasses can be grown successfully in water-limited environments by selecting an optimum soil moisture level for maximum biomass production. The mean carbon-isotope discrimination (13C) of Kallar grass (–14.4) and Sporobolus (–12.8) confirm that both are C4 plants. The carbon-isotope discrimination () was significantly and negatively correlated with WUE of the two species studied. The results of the present study confirm that 13C or of leaves can be used as good predictor of WUE in some C4 plants.  相似文献   

17.
A simple, ultrasensitive, nonextractive spectrophotometric method has been developed for the assay of Mo(VI), which involves Mo-catalyzed oxidation of 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid monosodium salt (AHNDSA) by H2O2 in acetic acid/sodium acetate buffer yielding an intense pink colored product with λmax of 540 nm. Beer’s law is obeyed in the range of 10–240 ng/ml with molar absorptivity of 3.0137 × 105 L mol−1 cm−1. The LOD and LOQ were found to be 0.7696 and 2.565 ng/ml, respectively. The applicability of the method toward water and biological samples was tested and statistically compared with a reference method.  相似文献   

18.
李兰晖  丁明军  黄齐  时光训  郑林 《生态学报》2017,37(11):3892-3901
亚热带湖滨沙化作为南方荒漠化的一种典型类型,阐明沙化土壤水分变化规律对该地区植被恢复与重建具有重要指示意义。研究于2013年2月至2014年2月对鄱阳湖多宝湖滨沙地的土壤水分动态进行了监测,分析了不同覆被条件下沙地土壤水分在年内及极端气候条件下的动态特征。结果如下:(1)湖滨沙地土壤水分在梅雨和伏旱时期差异显著。在梅雨期及其前后,土壤水分主要受降水控制,各下垫面土壤平均含水量相对较高(0.063 cm~3/cm~3),且差异较小;而在伏旱及其后期,覆盖条件的差异起关键作用,湿地松样地的土壤平均含水量均低于0.035 cm~3/cm~3。(2)持续高温干旱天气下,浅层10cm土壤含水量迅速降低,之后维持在极低水平(0.01 cm~3/cm~3);随着深度增加,不同样地土壤含水量差异将会增强。(3)在多雨季节,17年生湿地松能有效增加土壤表层的持水能力;在干旱季节,湿地松对降水的截留及吸附作用强烈地影响土壤水分的补给量及补偿深度,当降水强度较低时,17年生湿地松样地的浅层土壤水分难以获得补给。因此,在亚热带沙地进行湿地松种植时,应增大初植密度,并且对于植株过高的湿地松林,也应采取适当措施降低其密度,以抵御愈加频发的极端干旱事件带来的风险,促使沙化地区发生持续的正向演替。  相似文献   

19.
The mechanical properties of gelatin films were studied in relation to the effect of water, and compared with those of collagen films. The S-shaped sorption isotherm was separated into an adsorption curve C1 and dissolution curve C2. From the C2 curve, the interaction parameter χ1 of Flory–Huggins' equation was calculated. The χ1 of gelatin were larger than those of collagen at low relative humidities (RH), while they coincided with each other at high RH. It was found that a composite curve was made by shifting stress relaxation curves obtained at different humidities along the log time axis. The shift factor for the formation of the composite curve was analyzed by Fujita–Kishimoto's equation, which was based on the free volume theory. The parameter β, which expressed the extent of the contribution of sorbed water to the increase in the free volume of the system, was 0.05 in the range of C2 from 0 to 0.08 (0–65% RH). This value was much smaller than 0.16 for collagen. The value was 0.16 in the range of C2 higher than 0.08, which was equal to that of the collagen. Dynamic shear modulus G′, loss modulus G″, and tan δ were determined as functions of RH. The gelatin film extended more than 100% at 73% RH under the very small stress of about 107 dyn/cm2. This corresponds to the region where β changes from 0.05 to 0.16, although such a phenomenon was not observed in the collagen film. The wide-angle X-ray pattern of extended gelatin was similar to that of renatured collagen fiber.  相似文献   

20.
The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 g cm-2 in untreated plants to 46.56 g cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号