首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural specificity of the monocarboxylic acid transporter (MCT) for the transport of phenolic acids was investigated by measuring the inhibitory effect on the fluorescein transport in Caco-2 cell monolayers. Although most of the monohydroxylated derivatives had an inhibitory effect, the di- and tri-hydroxylated ones did not. The methoxylated derivatives were more inhibitory than the hydroxylated ones in all the meta-substituted derivatives, suggesting that meta-hydroxylation of the substrate would decrease the affinity for MCT.  相似文献   

2.
Here we characterized transepithelial taurine transport in monolayers of cultured human intestinal Caco-2 cells by analyzing kinetic apical and basolateral uptake and efflux parameters. Basolateral uptake was Na+- and Cl- dependent and was inhibited by β-amino acids. Uptake by this membrane showed properties similar to those of the apical TauT system. In both membranes, taurine uptake fitted a model consisting of a non-saturable plus a saturable component, with a higher half-saturation constant and transport capacity at the apical membrane (Km, 17.1 μmol/L; Vmax, 28.4 pmol·cm−2·5 min−1) than in the basolateral domain (Km, 9.46 μmol/L; Vmax, 5.59 pmol·cm−2·5 min−1). The non-saturable influx component, estimated in the absence of Na+ and Cl, showed no significant differences between apical and basolateral membranes (KD, 89.2 and 114.7 nL·cm−2 · 5 min−1, respectively). Taurine efflux from the cells is a diffusive process, as shown in experiments using preloaded cells and in trans-stimulation studies (apical KD,72.7 and basolateral KD, 50.1 nL·cm−2·5 min−1). Basolateral efflux rates were significantly lower than passive influx rates. We conclude that basolateral taurine uptake in Caco-2 cells is mediated by a transport mechanism that shares some properties with the apical system TauT. Moreover, calculation of unidirectional and transepithelial taurine fluxes reveals that apical influx of this amino acid is higher than basolateral efflux rates, thereby enabling epithelial cells to accumulate taurine against a concentration gradient.  相似文献   

3.
The absorption characteristics of artepillin C (AC), an active ingredient of Brazilian propolis, were examined by measuring permeation across Caco-2 cell monolayers. The permeation rate in the basolateral-to-apical direction, Jbl → ap, in the presence of proton gradient was 0.14 nmol/min/mg protein, whereas Jbl → ap in the absence of proton gradient was 1.14 nmol/min/mg protein. The latter value is nearly the same as the permeation rate in the apical-to-basolateral direction, Jap → bl, both in the presence and absence of proton gradient. In the presence of proton gradient, Jap → bl was almost constant, irrespective of NaN3 or benzoic acid. However, Jbl → ap dramatically increased upon the addition of NaN3 or benzoic acid specifically to the apical side. In both the presence and absence of proton gradient, Jap → bl also appeared to be constant irrespective of the paracellular permeability of Caco-2 cells. After AC was loaded apically in the presence of proton gradient, the intracellular AC increased with time. This accumulation was inhibited by apically loaded NaN3. These indicate that AC transport occurs mainly via transcellular passive diffusion, although a considerable amount of AC was taken up intracellularly by monocarboxylic acid transporter (MCT) on the apical side and not transported out across the basolateral membrane, suggesting that different subtypes of MCT are involved.  相似文献   

4.
The effects of 16 lectins isolated from foodstuff on the transport system across human intestinal Caco-2 cell monolayers were investigated by using four fluorescent markers: lucifer yellow (LY) for the paracellular pathway, fluorescein (FL) for the monocarboxylic acid transporter-mediated pathway, rhodamine 123 for the P-glycoprotein-mediated efflux pathway, and calcein for the multidrug resistance associated protein-related efflux pathway. The transepithelial electrical resistance (TER) values for the monolayers were also measured. WGA from wheat germ, ABA from white mushroom, AOL from Aspergillus oryzae, and CSL3 from chum salmon eggs (each at 100 µg/mL) decreased the TER value by 20–40% which resulted in increased LY transport. These lectins, as well as such other lectins as SBA from soybean, RBA from rice bran, and Con A from jack bean, affected other transport pathways too. These results indicate that the lectins modulated the transepithelial transport system in different ways, probably because of their specific binding characteristics toward Caco-2 cell monolayers.  相似文献   

5.
氯化铬和吡啶羧酸铬在Caco-2细胞中的摄取和转运   总被引:3,自引:0,他引:3  
采用一种体外培养的人小肠上皮细胞模型Caco-2研究了时间、浓度、温度对氯化铬和吡啶羧酸铬细胞摄取和跨细胞转运的影响。旨在探讨氯化铬和吡啶羧酸铬在小肠上皮细胞中的摄取和转运特点。结果表明:Caco-2细胞对氯化铬和吡啶羧酸铬的摄取和转运随浓度、时间而成线性增加,当温育温度从37℃降到4℃时,摄取和转运有下降趋势(P>0.05)。氯化铬和吡啶羧酸铬从肠腔侧(AP侧)到基底侧(BL侧)的表观通透系数(Papp)近似于BL侧到AP侧(分别为0.95~1.41倍和0.84~1.07倍)。氯化铬和吡啶羧酸铬的摄取率分别为(0.88±0.08)%和(4.73±0.60)%,转运率分别为(2.11±0.05)%和(9.08±0.25)%。结果提示氯化铬和吡啶羧酸铬是以被动扩散为主要方式被Caco-2细胞摄取和转运。  相似文献   

6.
Trp, Phe, and Tyr ethyl esters and their dipeptides with Gly at the C-terminals inhibited ovalbumin (OVA) permeation through Caco-2 monolayers. The inhibitory activity of Trp ethyl ester was the highest at near the concentration of 10-6 M. It was suggested that Trp ethyl ester inhibited transcellular permeation of OVA.  相似文献   

7.
Phenolic acids such asp-coumaric acid and microbial metabolites of poorly absorbed polyphenols are absorbed by the monocarboxylic acid transporter (MCT)-mediated transport system which is identical to the fluorescein/H+ cotransport system. We focus here on the physiological impact of MCT-mediated absorption and distribution. We examined whether MCT1, the best-characterized isoform found in almost all tissues, is involved in this MCT-mediated transport system. The induction of MCT1 expression in Caco-2 cells by a treatment with sodium butyrate (NaBut) did not increase the fluorescein permeability. Moreover, the transfection of Caco-2 cells with an expression vector encoding MCT1 caused no increase in either the permeability or uptake of fluorescein. Furthermore, in the MCT1-expressing oocytes, no increase ofp-coumaric acid uptake was apparent, whereas the uptake of salicylic acid, a substrate of MCT1, nearly doubled. Our data therefore establish that MCT1 was not involved in the MCT-mediated transport of phenolic acids.  相似文献   

8.
The effect of interleukin-4 (IL-4), a cytokine associated with allergy and inflammation, on the permeability of the intestinal epithelium was investigated. IL-4 reduced transepithelial electrical resistance (TER) and increased permeation to horseradish peroxidase (HRP) and Lucifer Yellow (LY) of human intestinal T84 cell monolayers. The increased permeation due to IL-4 treatment was also observed at 4 °C. The permeability of T84 cell monolayers to β-lactogulobulin (β-Lg), ovalbumin (OVA), and fluorescein isothiocyanate (FITC)-dextran of various molecular sizes was also high in the IL-4-treated cell monolayers. Sodium azide (NaN3), which inhibits ATP synthesis of the cells, did not inhibit the increases in these substances. Even 150 kDa FITC-dextran significantly permeated the T84 cells when the monolayers were treated with IL-4. These results suggest that fairly large molecules are able to permeate intestinal epithelial monolayers via the energy-independent paracellular pathway when the monolayers are exposed to excessive IL-4.  相似文献   

9.
Our recent study [S. Kobayashi, S. Tanabe, M. Sugiyama, Y. Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta, 1778 (2008) 33-41] shows that the mechanism of absorption of hesperetin involves both proton-coupled active transport and transcellular passive diffusion. Here, as well as analyzing the cell permeability of hesperetin, we also study the transport of other flavanones, naringenin and eriodictyol, using Caco-2 cell monolayers. Similar to hesperetin mentioned, naringenin and eriodictyol showed proton-coupled polarized transport in apical-to-basolateral direction in non-saturable manner, constant permeation in the apical-to-basolateral direction (Jap → bl) irrespective of the transepithelial electrical resistance (TER), and preferable distribution into the basolateral side after apical loading in the presence of a proton gradient. Furthermore, the proton-coupled Jap → bl of hesperetin, naringenin and eriodictyol, were inhibited by substrates of the monocarboxylic acid transporter (MCT), such as benzoic acid, but not by ferulic acid. In contrast, both benzoic and ferulic acids have no stimulatory effect on Jap → bl of each flavanone by trans-stimulation analysis. These results indicates that proton-driven active transport is commonly participated in the absorption of flavanone in general, and that its transport is presumed to be unique other than MCT-mediated transport for absorption of phenolic acids (PAs), sodium-dependent MCT (SMCT) nor anion exchanger-mediated transport.  相似文献   

10.
The characteristics of lysophosphatidylcholine (LPC) in its inhibition of the taurine uptake by human intestinal Caco-2 cells were investigated. By treating the cells with 200 μM of LPC, the taurine uptake was rapidly decreased by approximately 60%. This decrease was accompanied by an increase in the K m value for the uptake. A rapid uptake of LPC itself by the cells was also observed. The inhibitory activity of LPC was specific to the uptake of taurine and certain amino acids, while the uptake of glucose, glutamic acid and peptide (glycylglutamine) was not affected by LPC. The activity was dependent on the structure of a polar head and the bound fatty acid. The phosphorylcholine residue was likely to have played an important role, and surface active LPC with fatty acids of C14 or longer was highly inhibitory. These results suggest that the interaction of LPC with the taurine transporter in the intestinal cell membrane was the cause of the reduced taurine uptake.  相似文献   

11.
The cell permeability of hesperetin and hesperidin, anti-allergic compounds from citrus fruits, was measured using Caco-2 monolayers. In the presence of a proton gradient, hesperetin permeated cells in the apical-to-basolateral direction at the rate (Jap → bl) of 10.43 ± 0.78 nmol/min/mg protein, which was more than 400-fold higher than that of hesperidin (0.023 ± 0.008 nmol/min/mg protein). The transepithelial flux of hesperidin, both in the presence or absence of a proton gradient, was nearly the same and was inversely correlated with the transepithelial electrical resistance (TER), indicating that the transport of hesperidin was mainly via paracellular diffusion. In contrast, the transepithelial flux of hesperetin was almost constant irrespective of the TER. Apically loaded NaN3 or carbonyl cyanide m-chlorophenylhydrazone (CCCP) decreased the Jap → bl of hesperetin, in the presence of proton gradient, by one-half. In the absence of a proton gradient, both Jap → bl and Jbl → ap of hesperetin were almost the same (5.75 ± 0.40 and 5.16 ± 0.73 nmol/min/mg protein). Jbl → ap of hesperetin in the presence of a proton gradient was lower than Jbl → ap in the absence of a proton gradient. Furthermore, Jbl → ap in the presence of a proton gradient remarkably increased upon addition of NaN3 specifically to the apical side. These results indicate that hesperetin is absorbed by transcellular transport, which occurs mainly via proton-coupled active transport, and passive diffusion. Thus, hesperetin is efficiently absorbed from the intestine, whereas hesperidin is poorly transported via the paracellular pathway and its transport is highly dependent on conversion to hesperetin via the hydrolytic action of microflora. We have given novel insight to the absorption characteristics of hesperetin, that is proton-coupled and energy-dependent polarized transport.  相似文献   

12.
The nature of transepithelial and cellular transport of the dibasic amino acid lysine in human intestinal epithelial Caco-2 cells has been characterized. Intracellular accumulation of lysine across both the apical and basolateral membranes consists of a Na+-independent, membrane potential-sensitive uptake. Na+-independent lysine uptake at the basolateral membrane exceeds that at the apical membrane. Lysine uptake consists of both saturable and nonsaturable components. Na+-independent lysine uptake at both membranes is inhibited by lysine, arginine, alanine, histidine, methionine, leucine, cystine, cysteine and homoserine. In contrast, proline and taurine are without inhibitory effects at both membranes. Fractional Na+-independent lysine efflux from preloaded epithelial layers is greater at the basolateral membrane and shows trans-stimulation across both epithelial borders by lysine, arginine, alanine, histidine, methionine, and leucine but not proline and taurine. Na+-independent lysine influx (10 μm) in the presence of 10 mm homoserine shows further concentration dependent inhibition by lysine. Taken together, these data are consistent with lysine transport being mediated by systems bo,+, y+ and a component of very low affinity (nonsaturable) at both membranes. The relative contribution to lysine uptake at each membrane surface (at 10 μm lysine), normalized to total apical uptake (100%), is apical bo,+ (47%), y+ (27%) and the nonsaturable component (26%), and basal bo,+ (446%), y+ (276%) and the nonsaturable component (20%). Northern analysis shows hybridization of Caco-2 poly(A)+RNA with a human rBAT cDNA probe. Received: 3 July 1995/Revised: 6 February 1996  相似文献   

13.
Hibiscus acid, an α-amylase inhibitor isolated from roselle tea, and its derivatives were compared in an inhibition test for starch digestion. An α-amylase-added Caco-2 system was established as a useful model to evaluate the effects of α-glucosidase inhibitors on starch digestion. Hibiscus acid showed weak inhibition in this model system, and the methyl ester derivatives showed even weaker or no activity.  相似文献   

14.
Candida albicans, Saccharomyces cerevisiae and their cell wall components, zymosan and glucan, have been shown to stimulate interleukin-8 (IL-8/CXCL-8) production by intestinal epithelial cell-like Caco-2 cells pre-cultured with 10 mM butyric acid. We examined in this study whether these yeasts also altered the production of other cytokines and cyclooxygenases (COXs) by Caco-2 cells. Culturing Caco-2 cells with 10 mM butyric acid and 15% FBS for 4 days enhanced the basal levels of mRNA encoding IL-6, IL-8, IL-18, monocyte chemoattractant protein (MCP)-1, stem cell factor, transforming growth factor (TGF)-β1, TGF-β3, tumor necrosis factor (TNF)-α, COX-1, and COX-2, but not of granulocyte-macrophage colony-stimulating factor (GM-CSF) and TGF-β2. The inclusion of live S. cerevisiae or C. albicans further enhanced the production of IL-8, but not of the other cytokines and COXs. The non-pathogenic yeasts, C. kefyr, C. utilis, C. versatilis, Kluyveromyces lactis, K. marxianus, Schizosaccharomyces pombe and Zygosaccharomyces rouxii, used for the production of fermented foods and probiotics, and the opportunistic pathogens, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis, isolated from human tissue samples also enhanced IL-8 secretion by Caco-2 cells.  相似文献   

15.
16.
Hydroxyphenylpyruvate reductase (HPPR) is an enzyme involved in the biosynthesis of rosmarinic acid in Lamiaceae reducing hydroxyphenylpyruvates in dependence of NAD(P)H to the corresponding hydroxyphenyllactates. The HPPR protein was purified from suspension cells of Coleus blumei accumulating high levels of rosmarinic acid by ammonium sulfate precipitation, anion exchange chromatography, hydroxylapatite chromatography, chromatography on 2',5'-ADP-Sepharose 4B and SDS-polyacrylamide gel electrophoresis. The protein was tryptically digested and the peptides sequenced. Sequence information was used to isolate a full-length cDNA-clone for HPPR (EMBL accession number AJ507733) by RT-PCR, screening of a C. blumei cDNA-library and 5'-RACE-PCR. The open reading frame of the HPPR-cDNA consists of 939 nucleotides encoding a protein of 313 amino acid residues. The sequence showed that HPPR belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases. The HPPR-cDNA was heterologously expressed in Escherichia coli and the protein was shown to catalyse the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvate to 4-hydroxyphenyllactate and 3,4-dihydroxyphenylpyruvate to 3,4-dihydroxyphenyllactate.  相似文献   

17.
Native subunit proteins of glycinin, the acidic and the basic subunits designated as AS1+2, AS2+3, AS4, AS5, and AS6 and BS, respectively, were isolated by DEAE-Sephadex A-50 column chromatography in the presence of 6 m urea and 0.2 m 2-mercaptoethanol.

Reconstitution of intermediary subunits involving a disulfide bridge from native acidic and basic subunits was investigated. Formation of the intermediary subunit was observed in combinations between BS and each acidic subunit except AS6. The yields of the reconstituted intermediary subunits differed from one another.

Further, formation of the intermediary complexes was observed when native acidic and basic subunits of soybean glycinin and sesame 13 S globulin, respectively (or reverse combinations), were mixed under reductively denatured condition and subjected to the reconstitution procedure. Considerring the overall evidence, we may conclude that the complexes are probably a hybrid intermediary subunit.  相似文献   

18.
19.
Iceta R  Mesonero JE  Alcalde AI 《Life sciences》2007,80(16):1517-1524
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) broadly used in the treatment of human mood disorders and gastrointestinal diseases involving the serotoninergic system. The effectiveness of this therapy depends on repeated long-term treatment. Most of the long-term studies in vivo of SSRI effects on serotoninergic activity have focused on their effects on autoreceptors or postsynaptic receptors. The chronic effect of SSRIs on the activity of the serotonin transporter (SERT) has been less studied and the results have been contradictory. The aim of this study was to determine the specific effect of long-term fluoxetine treatment on human serotonin transporter (hSERT) in vitro, by using the human enterocyte-like cell line Caco-2. Results show that fluoxetine diminished the 5-HT uptake in a concentration-dependent way and that this effect was reversible. Fluoxetine affected mainly the hSERT transport rate by reducing the availability of the transporter in the membrane with no significant alteration of either the total hSERT protein content or the hSERT mRNA level. These results suggest that the effect of fluoxetine on the expression of hSERT is post-translational and has shown itself to be independent of PKC and PKA activity. This study may be useful to clarify the effect of the long-term fluoxetine therapy in both gastrointestinal and central nervous system disorders.  相似文献   

20.
采用一种体外培养的人小肠上皮细胞模型Caco-2研究了铜、铁、锌、维生素C、蔗糖、草酸钠、乙二胺四乙酸以及柠檬酸钠对三氯化铬和吡啶羧酸铬跨细胞转运的影响, 旨在探讨各种因素对不同形式三价铬吸收影响的差异.结果表明: 铁显著降低了吡啶羧酸铬和三氯化铬在Caco-2细胞中的转运量( P<0.05), 而铜和锌对它们的转运量没有产生显著影响(P>0.05); 维生素C、蔗糖、草酸钠、乙二胺四乙酸和柠檬酸钠对吡啶羧酸铬的转运量没有产生显著影响( P>0.05), 但维生素C和草酸钠显著增加了三氯化铬在Caco-2细胞中的转运量( P<0.05), 蔗糖则显著降低了三氯化铬的转运量(P<0.05).结果提示三氯化铬相对于吡啶羧酸铬而言, 在吸收时更容易受到各种因素的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号