首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylanases from alkalophilic thermophilic Bacillus spp. Wl and W2 were purified and characterized. The xylanases from the two strains were fractionated into two active components (I and II) by DEAE-Toyopearl 650M chromatography. Components I from the two strains had similar properties: optimum pH, 6.0; optimum temperature, 65°C; isoelectric point, pH 8.5 and 8.3; molecular weight, 21,500 and 22,500; and Michaelis constant, 4.5 and 4.0mg-xylan/ml. Components II from the two strains also had similar properties: optimum pH, 7.0~9.0 and 7.0~9.5; optimum temperature, 70°C; isoelectric point, pH 3.6 and 3.7; molecular weight, 49,500 and 50,000; and Michaelis constant, 0.95 and 0.57mg-xylan/ml. The activities of components I and II were inhibited by Hg++ and Cu++. Components I hydrolyzed xylan to yield xylobiose and higher oligomers, but components II produced xylose other than xylobiose and xylooligomers.  相似文献   

2.
The ability of xylanolytic enzymes produced by Aspergillus fumigatus RP04 and Aspergillus niveus RP05 to promote the biobleaching of cellulose pulp was investigated. Both fungi grew for 4–5 days in liquid medium at 40°C, under static conditions. Xylanase production was tested using different carbon sources, including some types of xylans. A. fumigatus produced high levels of xylanase on agricultural residues (corncob or wheat bran), whereas A. niveus produced more xylanase on birchwood xylan. The optimum temperature of the xylanases from A. fumigatus and A. niveus was around 60–70°C. The enzymes were stable for 30 min at 60°C, maintaining 95–98% of the initial activity. After 1 h at this temperature, the xylanase from A. niveus still retained 85% of initial activity, while the xylanase from A. fumigatus was only 40% active. The pH optimum of the xylanases was acidic (4.5–5.5). The pH stability for the xylanase from A. fumigatus was higher at pH 6.0–8.0, while the enzyme from A. niveus was more stable at pH 4.5–6.5. Crude enzymatic extracts were used to clarify cellulose pulp and the best result was obtained with the A. niveus preparation, showing kappa efficiency around 39.6% as compared to only 11.7% for that of A. fumigatus.  相似文献   

3.
Chitinases I and II were purified from the culture supernatant of Aeromonas sp. 10S-24 by ammonium sulfate precipitation, SP-Sephadex C-50 chromatography, Sephacryl S-200 gel filtration, and chromatofocusing. Both enzymes were most active at pH 4.0 and the optimum temperature for I and II were 50°C and 60°C. Chitinase I was stable at pHs between 4 and 9 and at temperatures below 50°C and chitinase II was stable at pHs between 5 and 7 and at temperatures below 45°C. The molecular weights were estimated by 8D8 polyacrylamide gel electrophoresis to be 112,000 and 115,000 for I and II respectively, while gel filtration showed the molecular weight to be 114,000 for both types of the enzyme. The pIs for I and II were 7.9 and 8.1, respectively. The activities of both enzymes were inhibited by Ag+ and iodoacetic acid.  相似文献   

4.
Lipase, an enzyme that hydrolyzes triacylglycerol, has been purified and characterized. The purification procedure includes ethanol precipitation and chromatographies on Sephacryl-200 HR, high resolution anion-exchange (mono Q) and Polybuffer exchanger 94. With this procedure, two forms of lipases from Geotrichum candidum were obtained. Lipase I (main enzyme) and lipase II (minor enzyme) were purified 35-fold with a 62% recovery in activity and 94-fold with a 18% recovery in activity, respectively. Their molecular weights have been estimated by polyacrylamide gel electrophoresis under denaturing conditions and by molecular sieving under native conditions at 56,000. Lipase I and II had optimum pH values of 6.0 and 6.8 and isoelectric points of 4.56 and 4.46, respectively. The enzymes are stable at a pH range of 6.0 to 8.0. Monovalent ions had little effect on both enzyme activities, while divalent ions at concentrations above 50 mM inhibited the lipase activities in a concentration-dependent manner. Sodium dodecyl sulfate at a concentration lower than 10 mM completely inhibited the lipase activity.  相似文献   

5.
Aspergillus kawachii α-amylase [EC 3.2.1.1] I and II were purified from shochu koji extract by DEAE Bio-Gel A ion exchange chromatography, Sephacryl S-300 gel chromatography (pH 3.6), coamino dodecyl agarose column chromatography and Sephacryl S-200 gel chromatography. By gel chromatography on a Sephacryl S-300 column, the molecular weights of the purified α-amylase I and II were estimated to be 104,000 and 66,000, respectively. The isoelectric points of α-amylase I and II were 4.25 and 4.20, respectively. The optimal pH range of α-amylase I was 4.0 to 5.0, and the optimum pH of α-amylase II was 5.0. The optimum temperatures of both α-amylases were around 70°C at pH 5.0. Both α-amylases were stable from pH 2.5 to 6.0 and up to 55°C, retaining more than 90% of the original activities. Heavy metal ions such as Hg2 + and Pb2 + were potent inhibitors for both α-amylases.  相似文献   

6.
Ribulose-1,5-bisphosphate (Rbu-P2) carboxylase isolated from Rhodopseudomonas sphaeroides 2.4.1.Ga was separated into two different forms by DEAE-cellulose column chromatography. Both forms, designated Peak I and Peak II have been purified to homogeneity by the criterion of polyacrylamide disc-gel electrophoresis. The Peak I carboxylase has a molecular weight of 550,000, while the Peak II carboxylase is a smaller protein having a molecular weight of approximately 360,000. Sodium dodecyl sulfate electrophoresis revealed a large subunit for both enzymes which migrates similarly to the large subunit of spinach Rbu-P2 carboxylase. The Peak I enzyme also exhibited a small subunit having a molecular weight of 11,000. No evidence for a smaller polypeptide was found associated with the Peak II enzyme. Antisera prepared against the Peak I enzyme inhibited Peak I enzymatic activity, but had no effect on the activity of the Peak II enzyme. The two enzymes exhibited marked differences in catalytic properties. The Peak I enzyme exhibits optimal activity at pH 8.0 and is inhibited by low concentrations of 6-phosphogluconate, while the Peak II enzyme has a pH optimum of 7.2 and is relatively insensitive to 6-phosphogluconate.  相似文献   

7.
Aspergillus versicolor grown on xylan or xylose produces two β-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these β-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same Rf. Temperature optimum of xylan-induced and xylose-induced β-xylosidases was 45°C and 40°C, respectively, and 35°C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55°C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.  相似文献   

8.
Two 2,5-diketo-d-gluconate reductases, I and II, were purified respectively 918-fold and 28-fold from a mutant strain derived from Corynebacterium sp. SHS 0007. The enzymes appeared to be homogeneous on polyacrylamide gel electrophoresis. Both reductases converted 2,5-diketo-d-gluconate to 2-keto-l-gulonate in the presence of NADPH and seemed to be active only for reduction. The molecular weights of reductases I and II were estimated to be 29,000 and 34,000, respectively; and both were monomeric. Their isoelectric points were respectively pH 4.3 and pH 4.1. The optimum pH was 6.0 to 7.0 for reductase I, and 6.0 to 7.5 for reductase II. The Km values (pH 7.0, 30°C) of reductase I for 2,5-diketo-d-gluconate and for NADPH were 1.8 mM and 12 μM, respectively; and the corresponding values of reductase II were 13.5 mM and 13 μM. Both reductases converted 5-keto-d-fructose to l-sorbose in the presence of NADPH.  相似文献   

9.
Two proteinases (I and II) from a marine luminous bacterium, FLN-108, were purified to homogeneity. The molecular weights of proteinases I and II were estimated to be 49,000 and 46,000, comprising a dimer of 23,000 molecular weight subunits, respectively. These enzymes were most active at from pH 8.0 to pH 9.0 and 50°C, and stable below 45°C. These enzyme activities were inhibited by EDTA and orthophenanthrolin. Phosphoramidon inhibited the activity of proteinase II, but not that of proteinase I. Metal ions such as Cu2+ , Hg2+ , and Ni2+ strongly inhibited these activities. These results indicate that the proteinases I and II are metal-chelater-sensitive, alkaline proteinases.  相似文献   

10.
A lipase with a high molecular weight was purified from Chromobacterium viscosum by chromatography using the Amberlite CG–50 and Sephadex G–75. The purified lipase (Lipase A) was found to be homogeneous by disc electrophoresis.

Lipase A had an optimum pH around 7 for lipolysis of olive oil and the enzyme was stable at the range of pH 4 to 9 and below 50°C. Zn2+, Cu2+, Fe3+ and high concentrations of l-cysteine, iodoacetic acid and NBS had remarkable inhibitory effects. Bile salts were activator. Lipase A was more active on water insoluble esters than water soluble esters. The isoelectric point of the enzyme was pH 4.7.  相似文献   

11.
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40°C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0–5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0–9.5. The temperature optimum was 65°C and retained 100% activity after 240 min at 60°C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K m was calculated as 0.32 mg ml−1. Circular dichroism spectroscopy estimated a secondary structure content of 33% α-helix, 17% β-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.  相似文献   

12.
Melanoidin decolorizing enzymes (MDE) were extracted from mycelia of Coriolus versicolor Ps4a and purified by DEAE-Sephadex, DEAE-Sephacel and Sephadex G-200 column chromatographies. MDE of this strain consisted of a main fraction, P-fraction, and a minor fraction, E-fraction, and the P-fraction was composed of at least five enzymes. P-III and P-IV in the P-fraction were picked as typical enzymes of this strain, and their enzymatic properties were investigated. P-III had a molecular weight of 48,400 ~ 50,000, an optimum pH of 5.5 and an optimum temperature of 30~35°C. P-III required glucose and 02 for the appearance of the activity, and was inhibited by p-CMB, N-BSI, Ag+ and o-phenanthroline.

On the other hand, P-IV had a molecular weight of 43,800 ~ 45,000, an optimum pH of 4.0~4.5 and an optimum temperature of 30~35°C. P-IV could decolorize melanoidin in the absence of glucose and O2, and was inhibited weakly by Ag+, p-CMB and N-BSI. P-IV is the enzyme that attacks the melanoidin directly in comparison with P-III which attacks melanoidin indirectly as in the sub-reaction of sugar oxidase.

Incidentally, a multiplicative effect between P-III and P-IV for decolorization was observed.  相似文献   

13.
Enzymes I and II, which have a high soymilk-clotting activity, produced from K-295G-7 were purified by chromatographies on Sephadex G-100, CM-cellulose, hydroxylapatite, and 2nd Sephadex G-100.

The two purified enzymes were found to be homogeneous by polyacrylamide gel elec-trophoresis (PAGE) at pH 4.3. The molecular weights of enzymes I and II were 28,000 and 29,500 by SDS-PAGE, and their isoelectric points were 9.22 and 9.45, respectively. Enzymes I and II coagulated soymilk optimally at 65°C and were stable up to 45°C. Both enzymes were most active at pH 5.8, for soymilk coagulation between pH 5.8 to 6.7, and were stable with about 50 ~ 100% of the original activity from pH 5 to 10.

Each of the purified enzymes was a serine protease with an optimum pH of 9.0 for soy protein isolate (SPI) and casein digestions, because these enzymes were inhibited completely by diisopropylfluoro-phosphate (DFP).

The soymilk-clotting activity to proteolytic activity ratio of the enzyme II was 3 times higher than that of enzyme I. Enzymes I and II were more sensitive to the calcium ion concentration in soymilk than bromelain is.  相似文献   

14.
Abstract

Filamentous fungi isolated from soil samples were screened for extracellular lipase production. The best producer was Hypocrea pseudokoningii identified by taxonomical criteria, and by rDNA sequencing of the variable internal transcribed spacers (ITS I and II) and the intervening 5.8S gene. The fungus was grown in a complex medium supplemented with 1% Tween 80 and 0.2% yeast extract, for 4 days. The optimum pH for extracellular and intracellular lipases was 7.0 and 8.0, respectively. Both enzymes exhibited maximum activity at 40°C. Extracellular and intracellular lipase activities were highly stable in the pH range 3.0–8.0 at room temperature. The intracellular lipase was thermostable up to 60°C, for 15 min and the extracellular, for 107 min, at the same temperature. The intracellular lipase was stimulated by silver ions. Extracellular lipase was stable in organic solvents, such as DMSO, alcohols, acetone, and acetonitrile, for 24 hours. Lipase activity increased around 80% when detergents were added to the enzymatic assay, such as Tween 80, Triton X-100, and SDS.  相似文献   

15.
A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5–10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90°C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85 min at 100°C and 12 min at 110°C. Received September 24, 1997 / Accepted May 20, 1998  相似文献   

16.

By screening 25 different psychrophilic strains isolated from the Arctic habitat, we isolated a strain capable of producing lipase. We identified this strain as Psychrobacter sp. ZY124 based on the amplified 16S rDNA sequence. The lipase, named as Lipase ZC12, produced from the supernatant of Psychrobacter sp. ZY124 cultured at 15 °C was purified to homogeneity by ammonium sulfate precipitation followed by Phenyl Sepharose FF gel hydrophobic chromatography. Based on the obtained amino acid sequence, Lipase ZC12 is classified as a member of the Proteus/psychrophilic subfamily of lipase family I.1; it has a molecular weight of 37.9 kDa. We also determined that the apparent optimum temperature for Lipase ZC12 activity is 40 °C. Lipase ZC12 shows remarkable organic solvent tolerance by remaining more 50% after incubated with 10–90% different organic solvents. In addition, acyl chain esters with C12 or longer were confirmed to be preferable substrates for Lipase ZC12. Lipase ZC12 also shows better stereoselectivity for (R, S)-1-phenylethanol chiral resolution in n-hexane solvent with (S)-1-phenylethanol (eep 92%) and conversion rate (39%) by transesterification reactions. These properties may provide potential applications in biocatalysis and biotransformation in non-aqueous media, such as in detergent, transesterification or esterification and chiral resolution.

  相似文献   

17.
Three enzymes possessing RNAase activity were isolated from barley seeds. These enzymes were further purified by ammonium sulphate precipitation DEAE-cellulose chromatography, gel filtration on Sephadex G-75 and DEAE-Sephadex A-50 chromatography. These enzymes have been characterized and classified as: 1. Plant RNAase I (EC 3.1.27.1). It has a pH optimum at 5.7 and molecular weight of 19 000. 2. Plant RNAase II (EC 3.1.27.1). It has a pH optimum at 6.35 and molecular weight of 19 000. 3. Plant nuclease I (EC 3.1.30.2). It has a pH optimum at 6.8 and molecular weight of 37 000. Two RNAases were purified to homogeneity by means of affinity chromatography on poly(G)-Sepharose 4B, as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

18.
Purification and characterization of the amylase of B. subtilis NRRL B3411   总被引:4,自引:0,他引:4  
The amylase of Bacillus subtilis NRRL B3411 has been purified and partially characterized. The specific activity can be increased from 300,000 units/g to 6,000,000 units/g with a 60% recovery of total units. The purified material consists of one major and one trace anodic component as determined by disc gel electrophoresis. The molecular weight was 48,000 as determined by bio-gel filtration; the molecular weight was 44,900 ± 2400 as determined by sedimentation equilibrium methods. This purified enzyme is stable at, 70°C in the presence of 0.01 M Ca++ and 0.1 M NaCl over a broad pH range from 5.5–9.5. The pH activity profile indicates optimum activity at pH 6.0. This amylase exhibits maximum activity at 60°C. The enzyme is a liquefying α-amylase as determined by analysis of hydrolysis products and immunological studies.  相似文献   

19.
《Process Biochemistry》1999,34(5):441-449
Two extracellular alkaline proteases produced by an alkalophilic Bacillus isolate were purified and characterized using acetone precipitation, DEAE- and CM-Sepharose CL-6B ion exchange and Sephacryl S-200 gel filtration chromatographic techniques. Analysis of the purified proteases by SDS–PAGE revealed that both proteases, AP-1 and AP-2 were homogenous with molecular weight estimates of 28 and 29 kDa, respectively. The optimum activity of AP-1 and AP-2 were at temperatures of 50 and 55°C and pHs of 11 and 12, respectively. The enzymes were also stable in the pH range of 6.0–12.0 for a period of 4 h with and without Ca2+ (5 mM) and temperatures of up to 50°C. The half-lives of the enzymes recorded at 50°C were 50 and 40 min for proteases AP-1 and AP-2, respectively. The inhibition profile of the enzymes by phenylmethanesulphonyl fluoride, confirmed these enzymes to be alkaline serine proteases. The purified proteases hydrolysed native protein substrates such as casein, elastin, keratin, albumin and the synthetic chromogenic peptide substrates Glu-Gly-Ala-Phe-pNA and Glu-Ala-Ala-Ala-pNA. The Km values for the purified proteases were calculated as 1.05 mM and 1.29 mM, respectively, for Glu-Gly-Ala-Phe-pNA, and 3.81 mM and 4.79 mM, respectively, for Glu-Ala-Ala-Ala-pNA as substrates. The kinetic data also indicated that small aliphatic and aromatic amino acids were the preferred residues at the P1 position.  相似文献   

20.
Two lytic enzymes (enzyme I and enzyme II) that lysed Micrococcus lysodeikticus were isolated from the crude extract of Polysphondylium pallidum myxamoebae grown in the presence of Klebsiella aerogenes by precipitation with protamine sulfate and by chromatography on DEAE-Sepharose CL-6B. Enzyme I was further purified by gel filtration on a Superose12 column, and enzyme II by chromatography on a MonoQ HR 5/5 column and gel filtration on a Superose12 column. Enzyme I was a basic protein, while enzyme II was acidic. The molecular weights of enzyme I and II were about 14,000 and 22,000, respectively by SDS-polyacrylamide gel electrophoresis. Optimum pHs for the activity were 5.0 for enzyme I and between 3.5 and 4.0 for enzyme II. The maximum activity of enzyme I and II was obtained at 65°C and 45°C to 55°C and at ionic strength of 0.0075 to 0.03 and 0.06, respectively. Both enzymes cleaved the glycosidic bond of β(1,4)-N-acetylmuramyl-acetylglucosamine of the cell wall peptidoglycan of Micrococcus lysodeikticus. These results indicate that the two lytic enzymes of Polysphondylium pallidum myxamoebae are N-acetylmuramidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号