首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new acylphloroglucinols were isolated from the leaves of Eucalyptus globulus Labill and identified as macrocarpals P (1) and Q (2). Structural elucidations were carried out using conventional 1D and 2D NMR and mass spectrometry together with complementary techniques (UV and IR). Macrocarpal Q was a diastereoisomer of macrocarpal E (3), configuration of which was not precised. Simultaneous isolation of macrocarpals E and Q allowed to determine the configurations of both compounds. The diformylphloroglucinol (4) was also isolated as well as already known compounds grandinol, macrocarpals D, I, L, N, O and am-1.  相似文献   

2.
Six novel phloroglucinol dialdehyde diterpene derivatives (macrocarpals B--G), which have antibacterial activity, were isolated from leaves of Eucalyptus macrocarpa. These compounds have closely related structures, the molecular formula for B--F being C28H40O6, and that of G being C28H38O5. The structures of macrocarpals B, D, and G were analyzed by means of NMR analyses.  相似文献   

3.
Formylated phloroglucinol compounds (FPCs) in Eucalyptus leaves are important determinants of feeding in marsupial folivores and have a wide range of other biological actions. We conducted a survey of the occurrence of formylated phloroglucinol compounds (euglobals, macrocarpals and sideroxylonals) in acetone-petrol extracts of 41 species of Eucalyptus from among seven informal subgenera growing on the East Coast of Australia. We used electrospray ionisation, Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTMS) to search crude extracts of eucalypt leaves for molecular weights characteristic of FPC compounds. We found masses characteristic of reported FPCs in 27 of the 41 species examined. The most frequently identified group of compounds was the sideroxylonals. Notable was the lack of known FPCs in the informal subgenus Monocalyptus.  相似文献   

4.
The Caenorhabditis elegans gene laf-1 is critical for both embryonic development and sex determination. Laf-1 is thought to promote male cell fates by negatively regulating expression of tra-2 in both hermaphrodites and males. We cloned laf-1 and established that it encodes a putative DEAD-box RNA helicase related to Saccharomyces cerevisiae Ded1p and Drosophila Vasa. Three sequenced laf-1 mutations are missense alleles affecting a small region of the protein in or near helicase motif III. We demonstrate that the phenotypes resulting from laf-1 mutations are due to loss or reduction of laf-1 function, and that both laf-1 and a related helicase vbh-1 function in germline sex determination. Laf-1 mRNA is expressed in both males and hermaphrodites and in both the germline and soma of hermaphrodites. It is expressed at all developmental stages and is most abundant in embryos. LAF-1 is predominantly, if not exclusively, cytoplasmic and colocalizes with PGL-1 in P granules of germline precursor cells. Previous results suggest that laf-1 functions to negatively regulate expression of the sex determination protein TRA-2, and we find that the abundance of TRA-2 is modestly elevated in laf-1/+ females. We discuss potential functions of LAF-1 as a helicase and its roles in sex determination.  相似文献   

5.
<正>Phosphatidylserine(PS),a quantitatively minor membrane phospholipid,is involved in many biological processes besides its role in membrane structure.One PS synthesis gene,PHOSPHATIDYLSERINE SYNTHASE1(PSS1),has been discovered to be required for microspore development in Arabidopsis thaliana L.but how PSS1 affects postembryonic development is still largely unknown.Here,we show that PSS1 is also required for inflorescence meristem and organ development in Arabidopsis.Disruption of PSS1 causes severe dwarfism,smaller lateral organs and reduced size of inflorescence meristem. Morphological and molecular studies suggest that both cell division and cell elongation are affected in the pss1-1 mutant.RNA in situ hybridization and promoter GUS analysis show that expression of both WUSCHEL(WUS) and CLAVATA3(CLV3) depend on PSS1.Moreover,the defect in meristem maintenance is recovered and the expression of WUS and CLV3 are restored in the pss1-1 clv1-1 double mutant. Both SHOOTSTEMLESS(STM) and BREVIPEDICELLUS(BP) are upregulated,and auxin distribution is disrupted in rosette leaves of pss1-1.However,expression of BP,which is also a regulator of internode development,is lost in the pss1-1 inflorescence stem.Our data suggest that PSS1 plays essential roles in inflorescence meristem maintenance through the WUS-CLV pathway,and in leaf and internode development by differentially regulating the class I KNOX genes.  相似文献   

6.
7.
8.
9.
The human RAP1A gene encodes a protein that apparently can antagonize the function of oncogenic ras genes in gene transfer experiments, but its normal function is unknown. To understand the function of this gene, we have undertaken a study of the mouse homolog, Rap1a. The complete coding sequence of a mouse Rap1a cDNA has been determined, and genomic clones representing three distinct Rap1a species were recovered. We find that Rap1a is located on distal mouse Chromosome (Chr) 3 near Nras, Ampd-1, Tshb, Ngfb, and Atp1a1. Two related sequences (Rap1a-rs1 and Rap1a-rs2) were also characterized. Rap1a-rs1, which was not localized, has a sequence very similar to the Rap1a cDNA, suggesting that it has been recently acquired by the mouse genome. Rap1a-rs2 is more distantly related to the gene sequence and is located on Chr 2 near Actc-1.  相似文献   

10.
Sexual reproduction in angiosperms is siphonogamous, and the interaction between pollen tube and pistil is critical for successful fertilization. Our previous study demonstrated that mutation of the Arabidopsis turgor regulation defect 1 (TOD1) gene leads to reduced male fertility, a result of retarded pollen tube growth in the pistil. TOD1 encodes a Golgi-localized alkaline ceramidase, a key enzyme for the production of sphingosine-1-phosphate (S1P), which is involved in the regulation of turgor pressure in plant cells. However, whether TOD1s play a conserved role in the innovation of siphonogamy is largely unknown. In this study, we provide evidence that OsTOD1, which is similar to AtTOD1, is also preferentially expressed in rice pollen grains and pollen tubes. OsTOD1 knockout results in reduced pollen tube growth potential in rice pistil. Both the OsTOD1 genomic sequence with its own promoter and the coding sequence under the AtTOD1 promoter can partially rescue the attod1 mutant phenotype. Furthermore, TOD1s from other angiosperm species can partially rescue the attod1 mutant phenotype, while TOD1s from gymnosperm species are not able to complement the attod1 mutant phenotype. Our data suggest that TOD1 acts conservatively in angiosperms, and this opens up an opportunity to dissect the role of sphingolipids in pollen tube growth in angiosperms.  相似文献   

11.
Summary Specialized transducing derivatives of the temperate bacteriophage P1 (P1std) are selected by transduction into recipients with deletions in the corresponding genes (Stodolsky 1973). When Escherichia coli K12 strains are used as donors in such transduction experiments, P1argF derivatives can be selected. The argF gene is unique to these strains (Glansdorff et al. 1967). Under these experimental conditions P1argF are formed with frequencies 10,000 times greater than other P1std. The majority of the P1argF derivatives that have been analyzed are indistinguishable by cleavage analyses. One such derivative, P1argF5 has been characterized in detail. Heteroduplex analysis against P1, P7, and P1CmO identified an 11 kb insertion of DNA precisely at the naturally occurring IS1 locus of P1. Cleavage analysis with EcoRI, BamHI and PstI confirmed this finding. To further define the argF insertion, a P1Cm13argF derivative was constructed having the IS1 sequences of Cm13 and argF in opposite orientation. Intrastrand annealing of P1Cm13argF5 DNA established that the argF segment is flanked by directly repeated IS1 sequences. The IS1-argF-IS1 segment is desigmated Tn2901. The assignment of the map position of the argF gene within the 11 kb insert of P1argF5 is discussed. The evolutionary significance of this finding and a model for P1argF formation is also presented.  相似文献   

12.
13.
Colorectal cancer (CRC) is the third-leading cause of cancer mortality worldwide. HACE1 function as a tumor-suppressor gene and is downregulated in several kinds of cancers. However, the distribution and clinical significance of HACE1 in CRC is still not clarified. In this study, we found that the HACE1 expression is greatly downregulated in CRC tissues and cell lines. Moreover, the HACE1 expression was significantly associated with inhibition of CRC cell proliferation, metastasis, and invasion. HACE1 inhibited epithelial–mesenchymal transition in CRC cells. Furthermore, we found that HACE1 altered the protein expression of the Hippo pathway by downregulation of YAP1. HACE1 suppresses the invasive ability of CRC cells by negatively regulating the YAP1 pathway. Our data indicates that HACE1 directly targets YAP1 and induces downregulation of YAP1, thereby increasing the activity of the Hippo pathway. In summary, these findings demonstrated that HACE1YAP1 axis had an important part in the CRC development and progression.  相似文献   

14.
Summary The TFS1 gene of Saccharomyces cerevisiae is a dosage-dependent suppressor of cdc25 mutations. Overexpression of TFS1 does not alleviate defects of temperature-sensitive adenylyl cyclase (cdc35) or ras2 disruption mutations. The ability of TFS1 to suppress cdc25 is allele specific: the temperature-sensitive cdc25-1 mutation is suppressed efficiently but the cdc25-5 mutation and two disruption mutations are only partially suppressed. TFS1 maps to a previously undefined locus on chromosome XII between RDN1 and CDC42. The DNA sequence of TFS1 contains a single long open reading frame encoding a 219 amino acid polypeptide that is similar in sequence to two mammalian brain proteins. Insertion and deletion mutations in TFS1 are haploviable, indicating that TFS1 is not essential for growth.  相似文献   

15.
A genetic locus controlling the electrophoretic mobility of a methylglyoxal dehydrogenase (EC 1.2.1.23) in the rat is described. The locus, designatedMgd1, is expressed in liver and kidney. Inbred rat strains have fixed either alleleMgd1 a or alleleMgd1 b . Codominant expression is observed in heterozygotes, providing evidence for a tetrameric enzyme structure. Backcross progenies showed the expected 1:1 segregation ratio, and there is evidence thatMgd1 is linked toPep3 andFh1 on chromosome 13. There is also evidence for two additional methylglyoxal dehydrogenases:Mgd2, present in liver and kidney, andMgd3, present only in heart.Supported by the Deutsche Forschungsgemeinschaft (Grant Be 352/18-1).  相似文献   

16.
17.
The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated. Received: 12 August 1999 / Accepted: 5 October 1999  相似文献   

18.
SNF1 of Saccharomyces cerevisiae is an essential gene for the derepression of glucose repression. A homolog of SNF1 (CtSNF1) was isolated from an n-alkane-assimilating diploid yeast, Candida tropicalis. CtSNF1 could complement the snf1 mutant of S. cerevisiae. The previously published method for introducing the exogenous DNA into C. tropicalis was employed to construct SNF1/ snf1 heterozygote and snf1/snf1 homozygote strains. The successfully constructed SNF1/snf1 heterozygote was named KO-1. Disruption of the second CtSNF1 allele was unsuccessful, suggesting that CtSNF1 might be essential for cell viability. Therefore, in order to control the expression of CtSNF1, a strain (named KO-1G) in which the promoter region of CtSNF1 was replaced with the GAL10 promoter of C. tropicalis was constructed, and the growth of strains KO-1 and KO-1G was compared with that of the parental strain. The growth of strain KO-1 on glucose, sucrose, or acetate did not differ from the growth of the parental strain, but strain KO-1 showed a slight growth retardation on n-alkane. The growth of strain KO-1G on galactose was normal, but the cells stopped growing when transferred to glucose-, acetate-, or n-alkane-containing medium. Northern blot analysis against mRNA from the n-alkane-grown KO-1G strain demonstrated a close relationship between the presence of CtSNF1 mRNA and the growth of the cells, indicating that CtSNF1 is essential for cell viability. Moreover, mRNA levels of isocitrate lyase, which is localized in peroxisomes of C. tropicalis, were significantly affected by the level of CtSNF1 mRNA. Received: 3 May 1999 / Accepted: 14 July 1999  相似文献   

19.
ABSTRACT

Rice blast caused by Pyricularia oryzae (syn. Magnaporthe oryzae) is a disease devastating to rice. We have studied the Arabidopsis-P. oryzae pathosystem as a model system for nonhost resistance (NHR) and found that SOBIR1, but not BAK1, is a positive regulator of NHR to P. oryzae in Arabidopsis. AGB1 is also involved in NHR. However, the genetic interactions between SOBIR1, BAK1, and AGB1 are uncharacterized. In this study, we delineated the genetic interactions between SOBIR1, BAK1, and AGB1 in NHR to P. oryzae in Arabidopsis and found SOBIR1 and AGB1 independently control NHR to P. oryzae in Arabidopsis pen2-1 mutant plants. Furthermore, XLG2, but not TMM, has a positive role in penetration resistance to P. oryzae in Arabidopsis pen2-1 mutant plants. Our study characterized genetic interactions in Arabidopsis NHR.

Abbreviations: PRR: pattern recognition receptor, RLK: receptor-like kinase, RLP: receptor-like protein, BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1, BIR1: BAK1-INTERACTING RECEPTOR-LIKE KINASE 1, SOBIR1: SUPPRESSOR OF BIR1-1-1, AGB1: ARABIDOPSIS G PROTEIN ß-SUBUNIT 1, XLG2: EXTRA-LARGE G PROTEIN 2  相似文献   

20.
Guo L  Li M  Wang W  Wang L  Hao G  Guo C  Chen L 《Molecular biology reports》2012,39(4):3491-3504
Bacterial leaf streak of rice (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a widely-spread disease in the main rice-producing areas of the world. Investigating the genes that play roles in rice–Xoc interactions helps us to understand the defense signaling pathway in rice. Here we report a differentially expressed protein gene (DEPG1), which regulates susceptibility to BLS. DEPG1 is a nucleotide-binding site (NBS)-leucine rich repeat (LRR) gene, and the deduced protein sequence of DEPG1 has approximately 64% identity with that of the disease resistance gene Pi37. Phylogenetic analysis of DEPG1 and the 18 characterized NBS-LRR genes revealed that DEPG1 is more closely related to Pi37. DEPG1 protein is located to the cytoplasm, which was confirmed by transient expression of DEPG1-GFP (green fluorescent protein) fusion construct in onion epidermal cells. Semi-quantitative PCR assays showed that DEPG1 is widely expressed in rice, and is preferentially expressed in internodes, leaf blades, leaf sheaths and flag leaves. Observation of cross sections of leaves from the transgenic plants with a DEPG1-promoter::glucuronidase (GUS) fusion gene revealed that DEPG1 is also highly expressed in mesophyll tissues where Xoc mainly colonizes. Additionally, Xoc negatively regulates expression of DEPG1 at the early stage of the pathogen infection, and so do the three defense-signal compounds including salicylic acid (SA), methyl jasmonate (MeJA) and 1-aminocyclopropane-1-carboxylic-acid (ACC). Transgenic rice plants overexpressing DEPG1 exhibit enhanced susceptibility to Xoc compared to the wild-type controls. Moreover, enhanced susceptibility to Xoc may be mediated by inhibition of the expression of some SA biosynthesis-related genes and pathogenesis-related genes that may contribute to the disease resistance. Taken together, DEPG1 plays roles in the interactions between rice and BLS pathogen Xoc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号