首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The copper stimulon in Escherichia coli consists of four regulons, the CueR-, CusS/CusR-, CpxA/CpxR-, and YedV/YedW regulons. E. coli mutants defective in cpxRA showed higher sensitivity to copper than the wild type. A total of 15 promoters were found to be induced in E. coli culture upon exposure to copper in a CpxA/CpxR-dependent manner. After gel-shift and DNase I foot-printing analyses, a conserved tandem repeat of pentanucleotide sequence, GTAAA(N)(4-8)GTAAA, with a conserved A of 4-bp upstream of each pentamer, was identified to be the CpxR-binding site. The difference in the orientation and location of the CpxR box is discussed with respect to the regulation mechanism among CpxR-regulon genes.  相似文献   

2.
Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica.  相似文献   

3.
Small heat shock proteins (sHsps), present from prokaryotes to eukaryotes, are a highly conserved molecular chaperone family. They play a crucial role in protecting organisms against cellular insults from single or multiple environmental stressors including heavy metal exposure, heat or cold shock, oxidative stress, desiccation, etc. Here, the toxicity of cadmium and copper, and their ability to modify the cellular growth rate at different temperatures in Escherichia coli cells were tested. Also, the response mechanism of the sHSP aggregation‐suppressing protein (AgsA) in such multiple stress conditions was investigated. The results showed that the half effect concentration (EC50) of cadmium in AgsA‐transformed E. coli cells at 37°C, 42°C, and 50°C were 11.106, 29.50, and 4.35 mg/L, respectively, and that of the control cells lacking AgsA were 5.05, 0.93, and 0.18 mg/L, respectively, while the half effect concentration (EC50) of copper in AgsA‐transformed E. coli cells at 37°C, 42°C, and 50°C were 27.3, 3.40, and 1.28 mg/L, respectively, and that of the control cells lacking AgsA were 27.7, 5.93, and 0.134 mg/L, respectively. The toxicities of cadmium and copper at different temperatures as observed by their modification of the cellular growth rate and inhibitory effects were in a dose‐dependent manner. Additionally, biochemical characterization of AgsA protein in cells subjected to cadmium and copper stresses at different temperatures implicated suppressed aggregation of cellular proteins in AgsA‐transformed E. coli cells. Altogether, our data implicate the AgsA protein as a sensitive protein‐based biomarker for metal‐induced toxicity monitoring.  相似文献   

4.
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electrochemical polarization tests using the Stern–Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper ion-resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing.  相似文献   

5.
6.
The rRNA N-glycosidase activities of the catalytically active A chains of the heterodimeric ribosome inactivating proteins (RIPs) ricin and abrin, the single-chain RIPs dianthin 30, dianthin 32, and the leaf and seed forms of pokeweed antiviral protein (PAP) were assayed on E. coli ribosomes. All of the single-chain RIPs were active on E. coli ribosomes as judged by the release of a 243 nucleotide fragment from the 3′ end of 23S rRNA following aniline treatment of the RNA. In contrast, E. coli ribosomes were refractory to the A chains of ricin and abrin. The position of the modification of 23S rRNA by dianthin 32 was determined by primer extension and found to be A2660, which lies in a sequence that is highly conserved in all species.  相似文献   

7.
Numerous small untranslated RNAs (sRNAs) have been identified in Escherichia coli in recent years, and their roles are gradually being defined. However, few of these sRNAs appear to be conserved in Vibrio cholerae, and both identification and characterization of sRNAs in V. cholerae remain at a preliminary stage. We have characterized one of the few sRNAs conserved between E. coli and V. cholerae: RyhB. Sequence conservation is limited to the central region of the gene, and RyhB in V. cholerae is significantly larger than in E. coli. As in E. coli, V. cholerae RyhB is regulated by the iron-dependent repressor Fur, and it interacts with the RNA-binding protein Hfq. The regulons controlled by RyhB in V. cholerae and E. coli appear to differ, although some overlap is evident. Analysis of gene expression in V. cholerae in the absence of RyhB suggests that the role of this sRNA is not limited to control of iron utilization. Quantitation of RyhB expression in the suckling mouse intestine suggests that iron availability is not limiting in this environment, and RyhB is not required for colonization of this mammalian host by V. cholerae.  相似文献   

8.
The Hsp60 and Hsp70 chaperones contain a number of conserved inserts that are restricted to particular phyla of bacteria. A one aa insert in the E. coli GroEL and a 21–23 insert in the DnaK proteins are specific for most Gram-negative bacteria. Two other inserts in DnaK are limited to certain groups of proteobacteria. The requirement of these inserts for cellular growth was examined by carrying out complementation studies with temperature-sensitive (T s) mutants of E. coli groEL or dnaK. Our results demonstrate that deletion or most changes in these inserts completely abolished the complementation ability of the mutant proteins. Studies with GroEL and DnaK from some other species that either lacked or contained these inserts also indicated that these inserts are essential for growth of E. coli. The DnaK from some bacteria contains a two aa insert that is not found in E. coli. Introduction of this insert into the E. coli DnaK also led to its inactivation, indicating that these inserts are specific for different groups. We postulate that these conserved inserts that are localized in loop regions on protein surfaces, are involved in some ancillary functions that are essential for the groups of bacteria where they are found. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
In this study a comparison was made between type 1 and type 2 isopentenyl diphosphate isomerases (IDI) in improving lycopene production in Escherichia coli. The corresponding genes of Bacillus licheniformis and the host (i Bl and i Ec , respectively) were expressed in lycopene producing E. coli strains by pTlyciBl and pTlyciEc plasmids, under the control of tac promoter. The results showed that the overexpression of i Ec improved the lycopene production from 33 ± 1 in E. coli Tlyc to 68 ± 3 mg/gDCW in E. coli TlyciEc. In contrast, the expression of i Bl increased the lycopene production more efficiently up to 80 ± 9 mg/gDCW in E. coli TlyciBl. The introduction of a heterologous mevalonate pathway to elevate the IPP abundance resulted in a lycopene production up to 132 ± 5 mg/gDCW with i Ec in E. coli TlyciEc-mev and 181 ± 9 mg/gDCW with i Bl in E. coli TlyciBl-mev, that is, 4 and 5.6 times respectively. When fructose, mannose, arabinose, and acetate were each used as an auxiliary substrate with glycerol, lycopene production was inhibited by different extents. Among auxiliary substrates tested, only citrate was an improving one for lycopene production in all strains with a maximum of 198 ± 3 mg/gDCW in E. coli TlyciBl-mev. It may be concluded that the type 2 IDI performs better than the type 1 in metabolic engineering attempts for isoprenoid production in E. coli. In addition, the metabolic engineering of citrate pathway seems a promising approach to have more isoprenoid accumulation in E. coli.  相似文献   

10.
Cattle are reservoirs of enterohemorrhagic Escherichia coli; however, their role in the epidemiology of other pathogenic E. coli remains undefined. A new set of quantitative real‐time PCR assays for the direct detection and quantification of nine virulence‐associated genes (VAGs) characteristic of the most important human E. coli pathotypes and four serotype‐related genes (wzxO104, fliCH4, rbfO157, fliCH7) that can be used as a surveillance tool for detection of pathogenic strains was developed. A total of 970 cattle fecal samples were collected in slaughterhouses in Germany and Spain, pooled into 134 samples and analyzed with this tool. stx1, eae and invA were more prevalent in Spanish samples whereas bfpA, stx2, ehxA, elt, est and the rbfO157/fliCH7 combination were observed in similar proportions in both countries. Genes characteristic of the hybrid O104:H4 strain of the 2011 German outbreak (stx2/aggR/wzxO104/fliCH4) were simultaneously detected in six fecal pools from one German abattoir located near the outbreak epicenter. Although no isolate harboring the full stx2/aggR/wzxO104/fliCH4 combination was cultured, sequencing of the aggR positive PCR products revealed 100% homology to the aggR from the outbreak strain. Concomitant detection by this direct approach of VAGs from a novel human pathogenic E. coli strain in cattle samples implies that the E. coli gene pool in these animals can be implicated in de novo formation of such highly‐virulent strains. The application of this set of qPCRs in surveillance studies could be an efficient early‐warning tool for the emergence of zoonotic E. coli in livestock.  相似文献   

11.
12.
13.
Aims: A public beach was frequently cited for health advisories because of high Escherichia coli levels, the source suspected to be a paper mill located upstream. This investigation sought to confirm whether or not the paper mill was the pollution source, and to characterize the risk to recreational bathers imposed by the source. Methods and Results: Quantification of E. coli in river water collected at incremental distances showed that paper mill effluent caused elevated E. coli levels in beach samples. Samples collected throughout the mill were variably positive for heterotrophic bacteria, total coliforms and E. coli, but negative for pathogenic E. coli O157 and Salmonella. Escherichia coli O157 or Salmonella spiked into mill samples (4·2 log10 or 5·6 log10 CFU per 100 ml, respectively) fell below detection levels within 14–24 h in raw (unaltered) samples, while in heat‐sterilized replicates, the counts remained at initial levels or increased over 36 h. Conclusions: Pathogenic E. coli O157 and Salmonella were not isolated from paper mill samples. The absence of native bacteria allowed the survival of pathogens, while their presence accelerated pathogen decline. Significance and Impact of the Study: The co‐existence of paper mill and swimming beach may be reasonable for now in spite of the limitations of an E. coli‐based assay for beach water.  相似文献   

14.
Recent studies have shown that conjugation systems of Gram‐negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved – but also intrinsically conformationally flexible – scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.  相似文献   

15.
Summary Once formylated, eukaryotic initiator tRNA behaves in anE. coli translation system like the homologous initiator, in its binding to ribosomes and ability to form a peptide bond with puromycin. Conversely, anE. coli initiator tRNA, either formylated or not, can bind to reticulocyte ribosomes in the presence of poly AUG and reticulocyte factors, but no transfer to puromycin is obtained. Thus, eukaryotic ribosomes seem to impose a more stringent discrimination as far as the biological specificity of initiator tRNA is concerned than doE. coli ribosomes.The possibility to interchange initiation factors has also been examined. When added to reticulocyte 40S subunits,E. coli initiation factors catalyze poly AUG dependent binding ofE. coli initiator tRNA whether formylated or not. Thus, ability ofE. coli factors to discriminate between the N-formyl substituted and unformylated initiator is lost when the ribosomal context is modified. Also in support to the role of the ribosome in tRNA selection is the fact that eukaryotic tRNA's which are recognized by a completeE. coli ribosomal system fail to react whenE. coli factors are crossed with reticulocyte ribosomes.Reticulocyte IF prepared by 2 hrs KCl extraction from ribosomes (IF2hrs) shows no catalytic activity onE. coli ribosomes whereas IF prepared by shorter KCl extraction (IF1/2hr) stimulates low but appreciableE. coli or reticulocyte fMet-tRNA binding to 70S ribosomes. A similar activity is displayed by partially purified IF-M1. Both IF1/2hr and IF-M1 dependent binding to heterologous ribosomes readily take place in the absence of GTP and no transfer to puromycin is observed. Complementation betweenE. coli IF1 and reticulocyte IF-M1 for fMet-tRNA binding to reticulocyte 40S subunits has been obtained suggesting functional similarities between IF-M1 andE. coli IF2. The possible role of IF-M1 in the homologous reaction is discussed.  相似文献   

16.
Summary E. coli [32P]-labelled 5S RNA was complexed with E. coli and B. stearothermophilus 50S ribosomal proteins. Limited T1 RNase digestion of each complex yielded three major fragments which were analysed for their sequences and rebinding of proteins. The primary binding sites for the E. coli binding proteins were determined to be sequences 18 to 57 for E-L5, 58 to 100 for E-L18 and 101 to 116 for E-L25. Rebinding experiments of purified E. coli proteins to the 5S RNA fragments led to the conclusion that E-L5 and E-L25 have secondary binding sites in the section 58 to 100, the primary binding site for E-L18. Since B. stearothermophilus proteins B-L5 and BL22 were found to interact with sequences 18 to 57 and 58 to 100 it was established that the thermophile proteins recognize and interact with RNA sequences similar to those of E. coli. Comparison of the E. coli 5S RNA sequence with those of other prokaryotic 5S RNAs reveals that the ribosomal proteins interact with the most conserved sections of the RNA.Paper number 12 on structure and function of 5S RNA.Preceding paper: Wrede, P. and Erdmann, V.A. Proc. Natl. Acad. Sci. USA 74, 2706–2709 (1977)  相似文献   

17.
A microcalorimetric technique based on the bacterial heat output was explored to evaluate the effect of copper–indomethacin complex on Staphylococcus aureus and Escherichia coli. The extent and duration of the inhibitory effect on the metabolism as judged from the rate constant (k) in log phase, half inhibitory ratio (IC50). The rate constant of bacteria in the presence of the drugs decreased with increasing concentrations of the drugs. The copper complex exhibited higher antibacterial activity than the parent drug whose IC50 value was 1.5 and 2.3 times lower than that of indomethacin to S. aureus and E. coli, respectively. It was indicated that when the copper ion is coupled with indomethacin, the drug is more potent as a bacteriostatic.  相似文献   

18.
E. coli SK has its own enzyme system providing DNA host specificity which differs from the known types of specificity inE. coli K12 andE. coli B. Modification and restriction are observed when the PBVI or PBV3 phages are transferred fromE. coli SK toE. coli B or K12 (and back).A methylase has been isolated fromE. coli SK cells and partly purified. This methylase catalyzesin vitro transfer of the labelled methyl groups from S-adenosylmethionine (SAM) to DNA of both phage and tissue origin which gives rise to 5-methylcytosine (5MC) and 6-methylaminopurine (6MAP). The methylase preparations isolated from the cells at the stationary growth have proved to be 1.5–1.7 times as active as the enzyme from the cells at the logarithmic growth stage. The extract ofE. coli SK cells infected with the phage SD cannot methylate DNAin vitro. This fact is due tode novo synthesis of the enzyme which disintegrates SAM down to 5-methylthioadenosine (5MTA) and homoserine (HS). This enzyme is not found in the cells infected with the SD phage in the presence of chloroamphenicole. The activity of the enzyme which disintegrates SAM is the highest between the 4th and the 5th minutes of infection. Thus it may be assumed that this enzyme, most probably, is an early virus specific protein and preventsin vivo methylation of the phage DNA.  相似文献   

19.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   

20.
A kinetic model of colony formation was proposed by Hattori, based on a count of the colonies that appear on a plate in successive short intervals of time. In this model, three parameters (,t r and N) are defined, which reflect the ability of a bacterium to yield colonies and allow us to described the dynamics of bacterial populations in soil and ofE. coli at different growth phases. In this paper we report a reparametrization of the kinetic model of colony formation, with the aim of facilitating more accurate calculation of andt r. Moreover, we observed that during the starvation ofE. coli andK. pneumoniae in urine, can be used to assess survival, since this parameter clearly decreases during starvation. Retardation time values (t r) were similar inE. coli andK. pneumoniae throughout the starvation experimental period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号