首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preventive effects of acylated anthocyanins from red cabbage on paraquat-induced oxidative stress were determined in rats. Decreased food intake and body weight gain, and increased lung weight and atherogenic index by feeding the rats on a diet containing paraquat were clearly suppressed by supplementing acylated anthocynins to the paraquat diet. Paraquat feeding increased the concentration of thiobarbituric acid-reactive substances (TBARS) in liver lipids, and decreased the liver triacylglycerol level. These effects tended to be suppressed by supplementing acylated anthocynins to the paraquat diet. In addition, the catalase activity in the liver mitochondrial fraction was markedly decreased by feeding on the paraquat diet, this decrease being partially suppressed by supplementing the paraquat diet with acylated anthocyanins. An increase in the NADPH-cytochrome-P450-reductase activity in the liver microsome fraction by paraquat was suppressed by supplementing the paraquat diet with acylated anthocyanins. These results suggest that acylated anthocyanins from red cabbage acted preventively against the oxidative stress in vivo that may have been due to active oxygen species formed through the action of paraquat.  相似文献   

2.
The preventive effects of nasunin (delphinidin-3-[4-p-coumaroyl-rhamnosyl(1-->6)glucosid e]-5-glucoside) on paraquat-induced oxidative stress were determined in rats. Decreased food intake and body weight gain and increased lung weight by feeding the rats a diet containing paraquat were clearly suppressed by supplementing nasunin to the paraquat diet. Paraquat feeding increased the concentration of thiobarbituric acid-reactive substances (TBARS) in liver lipids and the atherogenic index, and decreased the liver triacylglycerol level. These effects were also suppressed by supplementing nasunin to the paraquat diet. In addition, catalase activity in the liver mitochondrial fraction was markedly decreased by feeding the paraquat diet, this decrease being partially suppressed by supplementing the paraquat diet with nasunin. These results suggest that nasunin acted preventively against the oxidative stress in vivo that may have been due to active oxygen species formed through the action of paraquat.  相似文献   

3.
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat, but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1, while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F v/F m, Φ PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress.  相似文献   

4.
The in vivo paraquat-induced oxidative stress in rat tissue was studied by analyzing cholesterol-derived hydroperoxide as an index of lipid peroxidation. Paraquat (10 mg/kg) was administered i.p. to rats. Rats were sacrificed and lung, liver, and kidney were collected 2, 24 h, and 5 d after paraquat injection. Lipids were extracted and analyzed by HPLC with post-column chemiluminescence. We found that two cholesterol-derived hydroperoxides, 7α-hydroperoxycholest-5-en-3β-ol (7α-OOH) and 7β-hydroperoxycholest-5-en-3β-ol (7β-OOH) were present in lungs of control animals (0.06 and 0.06 nmol/g, respectively), in livers (6.5 and 15.8 nmol/g, respectively) and in kidneys (3.7 and 8.9 nmol/g, respectively). In liver paraquat increased lipid peroxidation approximately by 60% over the levels of control animals only at 2 h after paraquat treatment. In kidney, augmented lipid peroxidation, 7α-OOH and 7β-OOH (by 70% and 147%, respectively) above levels was found at 2 h after paraquat treatment. Interestingly, these increase remained in kidney of rats 5 d after a single dose of paraquat. In contrast, cholesterol-derived hydroperoxides were not affected in lung of paraquat dosed rats. This is the first report on 7α-OOH and 7β-OOH accumulations in rat liver and kidney, and it seems to reflect greater oxidative stress in the pathology of kidney of rats treated with acute paraquat at low dose.  相似文献   

5.
To investigate the effects of the coexistence of aflatoxin B1 (AFB1) and protein malnutrition in rat liver, weanling rats were fed either normal protein diet (20% protein), low‐protein (PEM) diet (5%), normal protein diet + 40 ppb AFB1, or low‐protein diet + 40 ppb AFB1. After 8 weeks, biomarkers of hepatic functions and oxidative stress, caspase‐3 activity, and tumor suppressor protein 53 (p53) were determined spectrophotometrically. Randomly amplified polymorphic DNA polymerase chain reaction (RAPD‐PCR) was employed to determine genomic alterations among the groups. Coexistence of aflatoxicosis and PEM significantly decreased glutathione, glutathione‐S‐transferase, glutathione peroxidase, and superoxide dismutase, while it increased peroxidase and catalase. RAPD‐PCR showed genomic alterations that were associated with significant increases in p53 level and caspase‐3 activity in rats fed PEM diet + AFB1. In conclusion, the coexistence of aflatoxicosis and protein malnutrition induced oxidative stress with concomitant genomic alterations in the liver of weanling rats.  相似文献   

6.
Polyamines, ubiquitous polycationic compounds, are involved in many cellular responses and relieve paraquat-induced cytotoxicity inEscherichia coli. We constructed a newE. coli mutant strain, JIL528, which is deficient in the biosynthesis of both putrescine and spermidine, to examine the physiological role of polyamines under oxidative stress caused by paraquat. Putrescine and spermidine downregulate the expression ofsoxS induced by paraquat in a concentration-dependent manner. The product of SoxS is a key regulator governing cellular responses against oxidative stress inE. coli. The downregulation ofsoxS expression by polyamines was not shown in thesoxR mutant background. Glucose-6-phosphate dehydrogenase (G6PDH; encoded byzwf) and manganese-containing superoxide dismutase (Mn-SOD; encoded bysodA) activities induced by paraquat were decreased by exogenous polyamines. The induction of thezwf expression by paraquat was also decreased by exogenous polyamines. The polyamine-deficient mutant strain JIL528 showed a highersoxS expression than its parent polyamine-proficient wild type BW1157, on exogenous supplementation of paraquat concentrations below 1 mol/L. While the growth rate of the mutant was decreased,soxS expression was increased in a concentration-dependent manner above 0.01 mol/L of paraquat. In contrast, growth inhibition of the mutant by paraquat was relieved, andsoxS was no longer induced by exogenous putrescine (1 mmol/L). In conclusion, polyamines protect against paraquat-induced toxicity but downregulatesoxS expression, suggesting that the protective role of polyamines against oxidative damage induced by paraquat results insoxS downregulation.  相似文献   

7.
The present study evaluates the combined effect of tetrahydrocurcumin and chlorogenic acid on oxidative stress in streptozotocin–nicotinamide-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection (i.p) of streptozotocin (45 mg/kg BW), 15 min after an i.p injection of nicotinamide (110 mg/kg BW). The levels of fasting plasma glucose and insulin were estimated. As an index of oxidative stress, the levels of enzymic antioxidants and lipid peroxidation products were analyzed in liver and kidney. Diabetic rats showed an increase in the levels of fasting plasma glucose, lipid peroxidative products such as thiobarbituric acid reactive substances and lipid hydroperoxides and a decrease in plasma insulin, and enzymic antioxidants viz., superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase. Combined administration of tetrahydrocurcumin (80 mg/kg BW) and chlorogenic acid (5 mg/kg BW) to diabetic rats for 45 days, reversed the biochemical changes to near normal. The above findings were supported by histological observations of the liver and kidney. Together the present study clearly reflects that combined dosage of tetrahydrocurcumin and chlorogenic acid augments enzymic antioxidants with a concomitant decrease in lipid peroxidation and protects against streptozotocin–nicotinamide-induced type 2 diabetes in experimental rats.  相似文献   

8.
Endotoxin lipopolysaccharide (LPS) and streptozotocin-induced diabetes are known to cause oxidative stress in vivo. There is some evidence that a sublethal dose of LPS provides protection against subsequent oxidative stress. Because of its wide use as a diabetogenic agent, this study was undertaken to determine if streptozotocin can likewise provide a protective effect against further oxidative stress in rats. Female Sprague–Dawley rats were given streptozotocin (50 mg/kg intraperitoneally once) prior to exposure to either bacterial endotoxin from Salmonella abortus equii (5 mg/kg intraperitoneally) or three additional daily doses of streptozotocin (50 mg/kg intraperitoneally). One week after LPS or streptozotocin treatments, oxidative stress was determined by measuring changes in antioxidant activity (glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, glutathione S-transferase, and γ-glutamyltranspeptidase) and in concentrations of glutathione, nitrite, and thiobarbituric acid reactants in liver, kidney, intestine, and spleen. High levels of some antioxidants in the LPS-control and streptozotocin-control rats, in contrast to normal levels found in diabetes + LPS and multidose-streptozotocin rats, suggest that streptozotocin, like LPS, may confer a protective effect against subsequent oxidative stress. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 143–149, 1998  相似文献   

9.
The aim of this study was to assess the intensity of oxidative stress by measuring levels of lipid peroxidation products in the duodenum, jejunum and colon of rats infected with Hymenolepis diminuta and evaluate the effectiveness of protection against oxidative stress by measuring the glutathione levels and activity of anti-oxidant enzymes: superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase.In exposed rats we observed a significant increase of lipid peroxidation products in the duodenum and jejunum. A significant decrease in superoxide dismutase activity in all the examined parts of the digestive tract was observed. Additionally, rats from 16 to 40 days post H. diminuta infection (dpi) had a decreased catalase activity in the colon, while at 60 dpi it increased. The glutathione peroxidase activity increased significantly in the colon at 60 dpi. The increase in glutathione reductase activity was observed in the colon in rats 60 dpi. There was a lack of changes in the levels of glutathione in the duodenum and a significant increase in its concentration in the jejunum and colon from 40 to 60 dpi and from 16 to 40 dpi, respectively. In this study we observed altered activity of anti-oxidant enzymes and glutathione level in experimental hymenolepidosis, as a consequence of oxidative stress. It may indicate a decrease in the efficiency of intestinal protection against oxidative stress induced by the presence of the parasite. The imbalance between oxidant and anti-oxidant processes may play a major role in pathology associated with hymenolepidosis.  相似文献   

10.
11.
Recent genetic analyses of longevity in animals have revealed that long-lived strains are more tolerant to environmental stresses. To investigate whether extended longevity in Arabidopsis also correlates with an increase in stress tolerance, the response was tested of 11 late-flowering mutants to the superoxide radical-generating herbicide paraquat. A tight correlation between flowering time and paraquat tolerance was found when plants were exposed to low doses of herbicide. Furthermore, the mutant gigantea (gi-3) with the longest delay in flowering time had a high tolerance level to paraquat-induced oxidative stress. All the tested gi alleles had an increased tolerance to paraquat toxicity compared to wild-type, although the actual levels of tolerance differed. In addition, the gi-3 mutant was more tolerant to hydrogen peroxide. These results suggest that the link between longevity and oxidative stress resistance in plants is similar to that found in animals, implying that this phenomenon may be general for all aerobic organisms.  相似文献   

12.
We evaluated the preventive effects of Terminalia chebula (T. chebula) aqueous extract on oxidative and antioxidative status in liver and kidney of aged rats compared to young albino rats. The concentrations of malondialdehyde (MDA), lipofuscin (LF), protein carbonyls (PCO), activities of xantione oxidase (XO), manganese‐superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione‐S‐transferase (GST), and glucose‐6‐phosphate dehydrogenase (G6PDH), levels of glutathione (GSH), vitamin C and vitamin E were used as biomarkers. In the liver and kidney of aged animals, enhanced oxidative stress was accompanied by compromised antioxidant defences. Administration of aqueous extract of T. cheubla effectively modulated oxidative stress and enhanced antioxidant status in the liver and kidney of aged rats. The results of the present study demonstrate that aqueous extract of T. cheubla inhibits the development of age‐induced damages by protecting against oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Oxidative stress is thought to be involved in lead-induced toxicity. The aim of this study was to investigate the possible protective role of naringenin on lead-induced oxidative stress in the liver and kidney of rats. In the present investigation, lead acetate (500 mg Pb/L) was administered orally for 8 weeks to induce hepatotoxicity and nephrotoxicity. The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, urea, uric acid, and creatinine were significantly (P < 0.05) increased following lead acetate administration. Lead-induced oxidative stress in liver and kidney tissue was indicated by a significant (P < 0.05) increase in the level of maleic dialdehyde and decreased levels of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Naringenin markedly attenuated lead-induced biochemical alterations in serum, liver, and kidney tissues (P < 0.05). The present study suggests that naringenin shows antioxidant activity and plays a protective role against lead-induced oxidative damage in the liver and kidney of rats.  相似文献   

14.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

15.
W Cheng  Y X Fu  J M Porres  D A Ross  X G Lei 《FASEB journal》1999,13(11):1467-1475
Since our prior work indicated that Se-dependent cellular glutathione peroxidase (GPX1) was necessary for protection against paraquat lethality, the present studies were to elucidate the biochemical mechanisms related to that protection. Four groups of mice [Se-deficient or -adequate GPX1 knockout and wild-type (WT)] were injected (i.p.) with 50 mg paraquat/kg body weight and tissues were collected 0, 0.5, 1, 2, 3, or 4 h after the injection. Whereas the ratios of NADPH/NADP and NADH/NAD in lung were reduced by 50-70% only 0.5 h after the injection in all groups, these two ratios in liver of the Se-adequate WT were significantly higher than those of the three GPX1 knockout or deficient groups 2-4 h after the injection. The paraquat-induced pulmonary lipid peroxidation and hepatic protein oxidation, measured as F(2)-isoprostanes and carbonyl contents, respectively, peaked at 1 h in these three groups. No such oxidative events were shown in any tissue of the Se-adequate WT throughout the time course. Whereas the F(2)-isoprostane formation was accelerated by both GPX1 knockout and Se deficiency in liver, it was not significantly elevated by the paraquat treatment in brain of any group. The paraquat injection also resulted in temporal changes in lung GPX activity and GPX1 protein in the Se-adequate WT, and significant reductions in lung total SOD activity in the GPX1 knockout or deficient groups. In conclusion, GPX1 plays a critical role in maintaining the redox status of mice under acute oxidative stress, and protects against paraquat-induced oxidative destruction of lipids and protein in vivo. These protections of GPX1 seem to be inducible and coordinated with those of other antioxidant enzymes.  相似文献   

16.
Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.  相似文献   

17.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

18.
The naturally occurring polyamine spermidine (Spd) has recently been shown to promote longevity across species in an autophagy-dependent manner. Here, we demonstrate that Spd improves both survival and locomotor activity of the fruit fly Drosophila melanogaster upon exposure to the superoxide generator and neurotoxic agent paraquat. Although survival to a high paraquat concentration (20 mM) was specifically increased in female flies only, locomotor activity and survival could be rescued in both male and female animals when exposed to lower paraquat levels (5 mM). These effects are dependent on the autophagic machinery, as Spd failed to confer resistance to paraquat-induced toxicity and locomotor impairment in flies deleted for the essential autophagic regulator ATG7 (autophagy-related gene 7). Spd treatment did also protect against mild doses of another oxidative stressor, hydrogen peroxide, but in this case in an autophagy-independent manner. Altogether, this study establishes that the protective effects of Spd can be exerted through different pathways that depending on the oxidative stress scenario do or do not involve autophagy.  相似文献   

19.
Exposure of cells to paraquat leads to production of superoxide anion (O2*-). This reacts with hydrogen peroxide to give the hydroxyl radical (*OH), leading to lipid peroxidation and cell death. In this study, we investigated the effects of cellular prion protein (PrPC) overexpression on paraquat-induced toxicity by using an established model system, rabbit kidney epithelial A74 cells, which express a doxycycline-inducible murine PrPC gene. PrPC overexpression was found to significantly reduce paraquat-induced cell toxicity, DNA damage, and malondialdehyde acid levels. Superoxide dismutase (total SOD and CuZn-SOD) and glutathione peroxidase activities were higher in doxycycline-stimulated cells. Our findings clearly show that PrPC overexpression plays a protective role against paraquat toxicity, probably by virtue of its superoxide dismutase-like activity.  相似文献   

20.
Hyperglycemia of diabetes has been implicated in increased tissue oxidative stress, with consequent development of secondary complications. Thus, stabilizing glucose levels near normal levels is of utmost importance. Because diet influences glycemic control, this study investigated whether a low-carbohydrate (5.5%) diet confers beneficial effects on the oxidative status of the heart, kidney, and liver in diabetes. Male and female normal and diabetic rats were fed standard chow (63% carbohydrates) or low-carbohydrate diet for 30 days. Elevated glucose, HbA(1c), and alanine and aspartate aminotransferases in diabetic animals were reduced or normalized by the low-carbohydrate diet. While diabetes increased cardiac activities of glutathione peroxidase and catalase, low-carbohydrate diet normalized cardiac glutathione peroxidase activity in diabetic animals, and reduced catalase activity in females. Diabetic rats fed low-carbohydrate diet had altered activities of renal glutathione reductase and superoxide dismutase, but increased renal glutathione peroxidase activity in diabetic animals was not corrected by the test diet. In the liver, diabetes was associated with a decrease in catalase activity and glutathione levels and an increase in glutathione peroxidase and gamma-glutamyltranspeptidase activities. Decreased hepatic glutathione peroxidase activity and lipid peroxidation were noted in diet-treated diabetic rats. Overall, the low-carbohydrate diet helped stabilize hyperglycemia and did not produce overtly negative effects in tissues of normal or diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号