首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

2.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

3.
In order to clarify the substrate specificity of the α-L-mannosidase activity of naringinase (Sigma), the following disaccharides and phenol glycosides were freshly prepared: methyl 2-O-(α-L-mannopyranosyl)­β-D-glucoside (1), methyl 3-O-(α-L-mannopyranosyl)-α-D-glucoside (2), methyl 4-O-(α-L-mannopyranosyl)-α-D-glucoside (3), methyl 5-O-(α-L-mannopyranosyl)-β-D-glucoside (4), methyl 6-O-(α-L-mannopyranosyl)-α-D­glucoside (5), 6-O-(α-L-mannpyranosyl)-D-galactose (6), p-nitrophenyl α-L-mannoside (7), and 4-methyl umbelliferone α-L-mannoside (8).These compounds, except for 3 and 5, were hydrolyzed with naringinase.  相似文献   

4.
D- and L-3′-Deoxy-3′-C-hydroxymethyl thymidine substituted with exocyclic methylene at 2′-position were synthesized, starting from D- and L-xylose as potential ribonucleotide reductase inhibitor, respectively, but they were found to be inactive against several tumor cell lines.  相似文献   

5.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

6.
From the methanolysis product of the antibiotic YA–56 X (Zorbamycin) and Y belonging to phleomycin-bleomycin group, two monosaccharides and one disaccharide were isolated as their fully acetylated derivatives. The structures of these compounds were determined to be methyl 2,3,4-tri-O-acetyl-6-deoxy-β-L-gulopyranoside, methyl 2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranoside and methyl 2-O-(2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranosyl)-3,4-O-0-acetyl-6-deoxy-β-L-“gulopyranoside,

Based on these results, it was concluded that 2-O-(3-O-carbamoyl-α-D-mannosyl)-6-deoxy-L-gulose is present as a sugar moiety of the antibiotic YA–56.  相似文献   

7.
A xylan from bamboo culm was isolated by extraction with aikali of chlorite holocellulose and fractional precipitation as a copper complex. The structure was investigated by means of examination of acid components by controlled hydrolysis, methylation analysis, and periodate oxidation. As a result, 4-O-methyl-α-D-glucuronic acid and 2-O-(4-O-methyl-α-D-glucopyranosyluronic acid) D-xylose were isolated and identified as acid components of the bamboo xylan. Hydrolysis of the fully methylated products afforded 2,3,5-tri-O- methyl-L-arabinose (1.6 moles), 2,3,4-tri-O-methyl-D-xylose (1.2 moles), 2,3,4,6-tetra-O-methyl-D-glucose(0.4 moles), 2,3-di-O-methyl-D-xylose (35.8 moles) and mono-O-methyl-D-xylose (2.6 moles). In addition to the above methylated sugars, 2,3,4-tri-O-methyl-D-glucuronic acid and partially methylated aldobiouronic acid were separated by cellulose column chromatography and identified. These results suggest that the bamboo xylan consists mainly of a linear backbone of 1,4-linked β-D-xylopyranose unit, to which L-arabinofuranose and 4-O-methyl-D-glucuronic acid were attached as a single side chain unit at C2 or C3.

Additional evidence for a linear chain structure has been given by periodate oxidation. On oxidation by periodate, the bamboo xylan consumed 1.09 moles of periodate and produced 0.05 mole of formic acid per anhydroxylose unit.  相似文献   

8.
The anti-diabetic effects of a kaempferol glycoside-rich fraction (KG) prepared from leaves of unripe Jindai soybean (Edamame) and kaempferol, an aglycone of kaempferol glycoside, were determined in genetically type 2 diabetic KK-Ay mice. The hemoglobin A1c level was decreased and tended to be decreased by respectively feeding KG and kaempferol (K). The area under the curve (AUC) in the oral glucose tolerance test (OGTT) tended to be decreased by feeding K and KG. The liver triglyceride level and fatty acid synthase activity were both decreased in the mice fed with KG and K when compared to those parameters in the control mice. These results suggest that KG and K would be useful to improve the diabetes condition. The major flavonoids in KG were identified as kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-galactopyranoside, kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-glucopyranoside, kaempferol 3-O-β-D-(2-O-β-D-glucopyranosyl) galactopyranoside and kaempferol 3-O-β-D-(2,6-di-O-α-L-rhamnopyranosyl) galactopyronoside, suggesting that these compounds or some of them may be concerned with mitigation of diabetes.  相似文献   

9.
An extracellular polysaccharide elaborated by a new species of Beijerinckia indica, named TX-1, was composed of D-glucose, L-fucose, D-glycero-D-manno-heptose, and D-glucuronic acid in a molar ratio of 5.0:1.0:2.0:0.9, in addition to 16.2% of the acetyl group. Among the polysaccharides of the Beijerinckia species, the present polysaccharide might be the first acidic type having an L-fucose residue. A methylation analysis, Smith degradation study and fragmentation analysis show that this polysaccharide consisted of non-reducing terminal D-glucose, O-4 substituted D-glucose, O-2 substituted D-glycero-D-manno-heptose, O-4 substituted D-glucuronic acid, O-3 and O-4 substituted D-glucose, and O-3 substituted L-fucose residues. A D-glucuronic acid residue was linked to the O-3 position of the L-fucose residue by an α-glycosidic linkage. Most of the D-glucose residues in the backbone chain were substituted at the O-3 position, with the side chain having non-reducing terminal D-glucose residues. It is suggested by the reaction with Con A that the anomeric configuration of the terminal D-glucose residues was β.  相似文献   

10.
A simple procedure is described to obtain D- and L-allothreonine (D- and L-aThr). A mixture of N-acetyl-D-allothreonine (Ac-D-aThr) and N-acetyl-L-threonine (Ac-L-Thr) was converted to a mixture of their ammonium salts and then treated with ethanol to precipitate ammonium N-acetyl-L-threoninate (Ac-L-Thr·NH3) as the less-soluble diastereoisomeric salt. After separating Ac-L-Thr·NH3 by filtration, Ac-D-aThr obtained from the filtrate was hydrolyzed in hydrochloric acid to give D-aThr of 80% de, recrystallized from water to give D-aThr of >99% de. L-aThr was obtained from a mixture of the ammonium salts of Ac-L-aThr and Ac-D-Thr in a similar manner.  相似文献   

11.
ABSTRACT

Tyrosinase is the key enzyme that controls melanin formation. We found that a hot water extract of the lyophilized fruiting body of the fungus Lyophyllum decastes inhibited tyrosinase from Agaricus bisporus. The extract was fractionated by ODS column chromatography, and an active compound was obtained by purification through successive preparative HPLC using an ODS and a HILIC column. Using spectroscopic data, the compound was identified to be an uncommon amino acid, 6-hydroxytryptophan. 6-Hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan were prepared through a Fenton reaction from L-tryptophan and D-tryptophan, respectively. The active compound was determined to be 6-hydroxy-L-tryptophan by comparison of their circular dichroism spectra and retention time on HPLC analysis of the Nα-(5-fluoro-2,4-dinitrophenyl)-L-leuciamide derivative with those of 6-hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan. A Lineweaver–Burk plot of the enzyme reaction in the presence of 6-hydroxy-L-tryptophan indicated that this compound was a competitive inhibitor. The IC50 values of 6-hydroxy-L-tryptophan was 0.23 mM.  相似文献   

12.
Chemical structures of pectic substances degraded by protopectinase-C (PPase-C) were characterized to identify the releasing mechanism of pectin from sugar beet protopectin by the action of that enzyme. The substrate of PPase-C was a polysaccharide isolated from sugar beet pulp by extraction with NaOH and sequential digestions with rhamnogalacturonase (PPase-T), β-1,4-D-galactanase, and α-L-arabinofuranosidase. The structure of this polysaccharide was analyzed by gas-liquid chromatography (GLC), NMR analysis, and gas chromatography-mass spectrometry (GC-MS), and it was identified as α-1,5-L-arabinan. According to our results, arabinan chains seemed to be connected to rhamnogalacturonan through a chain of β-l,4-D-galactan. PPase-C hydrolyzed both linear α-1,5-L-arabinan and ramified L-arabinan in a random manner, producing L-arabinose. From these results, PPase-C could be classified as arabinan endo-1,5-α-L-arabinase [EC 3.2.1.99]. Moreover, PPase-C seemed to split the L-arabinan of the polysaccharides connecting the rhamnogalacturonan to the other constituents of the plant cell wall in sugar beet pulp, releasing water-soluble pectin.  相似文献   

13.
A growth factor (TJF) for a malo-lactic fermentation bacterium (Leuconostoc sp.) has been found to be 4′-O-(β-D-glucopyranosyl)-D-pantothenic acid with structural and synthetical studies. Now other 4′-O-glycosides (β-D-ribofuranosyl, α-D-glucopyranosyl, β-D-galacto-pyranosyl, β-maltosyl and β-cellobiosyl) and 2′,4′-O-di-β-D-glucopyranoside of DL-pantothenic acid, and 4′-O-β-D-glucopyranoside of DL-pantethine were synthesized to examine their biological activities. The improved syntheses of TJF were also examined.  相似文献   

14.
The emission of light in the marine ostracod Cypridina hilgendorfii (presently Vargula hilgendorfii) is produced by the Cypridina luciferin-luciferase reaction in the presence of molecular oxygen. Cypridina luciferin has an asymmetric carbon derived from isoleucine, and the absolute configuration is identical to the C-3 position in L-isoleucine or D-alloisoleucine. To determine the stereoselective incorporation of the isoleucine isomers (L-isoleucine, D-isoleucine, L-alloisoleucine, and D-alloisoleucine), we synthesized four 2H-labeled isoleucine isomers and examined their incorporation into Cypridina luciferin by feeding experiments. Judging by these results, L-isoleucine is predominantly incorporated into Cypridina luciferin. This suggests that the isoleucine unit of Cypridina luciferin is derived from L-isoleucine, but not from D-alloisoleucine.  相似文献   

15.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

16.
Cyclomaltodextrin glucanotransferase (EC 2.4.1.19, abbreviated as CGTase) derived from Bacillus stearothermophilus produced a series of transfer products from a mixture of cyclomaltohexaose and cyclic tetrasaccharide (cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→}, CTS). Of the transfer products, only two components, saccharides A and D, remained and accumulated after digestion with glucoamylase. The total combined yield of the saccharides reached 63.4% of total sugars, and enzymatic and instrumental analyses revealed the structures of both saccharides. Saccharide A was identified as4-mono-O-α-glucosyl-CTS, {→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→}, and sachharide D was 4,4′-di-O-α-glucosyl-CTS, {→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→}. These structures led us to conclude that the glycosyltransfer catalyzed by CGTase was specific to the C4-OH of the 6-linked glucopyranosyl residues in CTS.  相似文献   

17.
Two pyridoxine compounds were found to be formed in a culture filtrate of Aspergillus niger and A. sydowi, when grown in a medium containing sucrose and pyridoxine. Each of the two compounds I and II was obtained as a white powdered preparation by preparative paper chromatography, gel filtration on Toyopearl HW-40S and Sephadex G-10 columns, DEAE-cellulose column chromatography, and lyophilization. Compounds I and II were identified as 5?-O-(β-D-fructofuranosyl)-pyridoxine and 5?-O-(β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl]-pyridoxine, on the basis of the various experimental results, viz., elementary analyses, UV, 1H-, and 13C-NMR spectra, products by hydrolysis with acid and yeast β-D-fructofuranosidase, migration on paper electrophoresis, and Gibbs reaction in the presence and absence of boric acid. Levansucrase from Microbacterium laevaniformans and yeast β-D-fructofuranosidase did not catalyze the β-D-fructofuranosyl transfer from sucrose to pyridoxine to give rise to β-D-fructofuranosyl-pyridoxine.  相似文献   

18.
19.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

20.
Benzyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside (β-primeveroside) (1), 2-phenylethyl β-primeveroside (2), and 2-phenylethyl 6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (β-rutinoside) (3) were isolated as aroma precursors of benzyl alcohol and 2-phenylethanol from flower buds of Jasminum sambac Ait. The isolation was guided by an enzymatic hydrolysis and GC and GC-MS analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号