首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We isolated a homologue of cathepsin F from cDNA library of olive flounder liver. A 2,077 kb full-length cDNA encoding a predicted polypeptide of 474 amino acids was sequenced. The flounder cathepsin F exhibits a domain structure typical for papain-like cysteine proteases, a 17 amino acid N-terminal hydrophobic signal sequence followed by an extraordinarily long propeptide of 244 amino acids and the domain of the mature protease comprising 213 amino acids. The mature region contains all features characteristic of a papain-like cysteine protease, including the highly conserved cysteine, histidine and asparagine residues of the ‘catalytic triad’. The cathepsin F protein showed 49–99% amino acid sequence identity with other known cathepsin F sequences. An in vivo expression study showed that cathepsin F mRNA was expressed predominantly in brain, liver, eye and heart, and moderately in other tissues. The accumulation of cathepsin F mRNA in early stage of development increased with development. This expression pattern suggests that flounder cathepsin F has been implicated in the growth and reproduction regulation.  相似文献   

3.
Calciferin, a new parathyroid hormone stimulating the release of cathepsins D and L (but not B) from isolated lysosomes, or the release of cathepsin D from erythrocytes or ghosts in vitro, elevated free cathepsin D in the blood, and at the same time stimulated DNA synthesis in the intact liver when it was injected into mice. Both calciferin and free cathepsin D in the blood (rats) were elevated concomitantly soon after 70% hepatectomy, reaching a peak around 5 hr. The cathepsin D-elevation was almost proportional to fractional hepatectomies. Cathepsin L (but not B), when injected intraperitoneally into mice, stimulated DNA synthesis and mitosis in the intact liver much like cathepsin D, the effect of which was reported earlier. In contrast to the mitogenic effects of calciferin or cathepsins (D and L) in vivo, only cathepsin L (but not cathepsin D or calciferin) in low concentrations appeared to stimulate DNA synthesis in the cultured liver cells, and also stimulated adenylate cyclase of isolated liver plasma membranes in vitro. Dibutyryl-cyclic AMP in concentrations lower than 10(-5) M also stimulated DNA synthesis in cultured liver cells.  相似文献   

4.
Cathepsin S was purified from bovine spleen by acid autolysis, (NH4)2SO4 fractionation and chromatography on CM-Sephadex C-50, CM-cellulose and activated-thiol-Sepharose. Cathepsin L was isolated from lysosomal fractions of rat liver, rat kidney and bovine liver. Generally, cathepsin L was bound tightly to CM-Sephadex C-50. Preparations of cathepsin L from rat liver, rat kidney and bovine liver were shown to have kinetic constants for the substrate benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide in the same range (Km 2-3 microM). Benzyloxycarbonyl-Phe-Phe-diazomethane proved to be a sensitive irreversible inhibitor of cathepsin L from different species. Cathepsin S differed in all these characteristics from cathepsin L. A polyclonal antibody to cathepsin L from rat reacted with bovine cathepsin L but not with bovine cathepsin S.  相似文献   

5.
Selective cleavage of peptide bonds by cathepsins L and B from rat liver   总被引:1,自引:0,他引:1  
The selective cleavage of peptide bonds by cathepsin L from rat liver was examined with a hexapeptide, luteinizing hormone releasing hormone, neurotensin and oxidized insulin A chain as model substrates. The specificity of cathepsin L was compared with that of cathepsin B. Cathepsin L cleaved peptide bonds that have a hydrophobic amino acid, such as Phe, Leu, Val, and Trp or Tyr, in position P2. A polar amino acid, such as Tyr, Ser, Gly, Glu, Asp, Gln, or Asn, in position P1. enhanced the susceptibility of the peptide bond to cathepsin L, though the importance of the amino acid residue in position P1' was not as great as that of the amino acid in position P2 for the action of cathepsin L. These results suggest that, in contrast to cathepsin B, cathepsin L shows very clear specificity.  相似文献   

6.
The major excreted protein of transformed mouse fibroblasts (MEP) has recently been identified as the lysosomal cysteine protease, cathepsin L. The synthesis and intracellular trafficking of this protein in mouse fibroblasts are regulated by growth factors and malignant transformation. To further define the basis for this regulation, a cDNA encoding MEP/cathepsin L was isolated from a mouse liver cDNA library and used to compare cathepsin L of normal and Kirsten sarcoma virus-transformed NIH 3T3 fibroblasts. Although cathepsin L message levels were elevated 20-fold in the transformed fibroblasts, normal and transformed cells displayed similar cathepsin L genomic DNA digest patterns and gene copy numbers, and cathepsin L mRNA sequences appeared identical by RNase protection analysis. These findings indicate that (i) cathepsin L is synthesized from the same gene in normal and transformed cells and (ii) cathepsin L polypeptides made by these cells are translated with the same primary sequence. Cathepsin L polypeptides synthesized by quiescent, growing, and transformed cells displayed similar isoelectric focusing patterns, suggesting similar post-translational modification. Site-directed mutagenesis of the mouse liver cDNA and expression in COS monkey cells was used to examine the glycosylation of mouse cathepsin L. The results indicated that only one of the two potential N-linked glycosylation sites (the one at Asn221) is glycosylated. Analysis by ion exchange chromatography on QAE-Sephadex, and affinity chromatography on mannose 6-phosphate receptor-Affi-Gel 10, indicated that the cathepsin L oligosaccharide was phosphorylated similarly in normal and transformed cells. Although several phosphorylated oligosaccharide species were observed, the major species contained two phosphomonoester moieties and bound efficiently to the receptor. These findings suggest that cathepsin L made by normal and transformed mouse fibroblasts are identical and substantiate the hypothesis that trafficking of cathepsin L in these cells is regulated by growth-induced changes in the lysosomal protein transport system.  相似文献   

7.
The activity of cathepsin L is examined in the culture supernatants of 38 human, murine and hamster tumor cell lines. It is found that all cell lines secrete the enzyme possessing cathepsin L activity. The supernatant of HPC-YP cell cultures is purified and characterized as the enzyme preparation, because this supernatant shows the highest cathepsin L activity. The results indicate that the enzyme produced in HPC-YP cells is different from cathepsin L of normal liver in the several points. The molecular weight of the enzyme is 68 kd, whereas it is 34 kd for the liver cathepsin L. The enzyme is more stable to heat treatment and at the various pH than the liver cathepsin L. Furthermore, the inhibitors, which inhibit the liver cathepsin L activity, do not inhibit the activity of this enzyme. It is concluded that the enzyme showing cathepsin L activity in the culture supernatants of human tumor cells is different from human normal liver cathepsin L.  相似文献   

8.
Species variations amongst lysosomal cysteine proteinases   总被引:4,自引:0,他引:4  
H Kirschke  P Locnikar  V Turk 《FEBS letters》1984,174(1):123-127
Properties of cathepsin L from rat liver lysosomes were compared with those of a similar enzyme, cathepsin S from beef spleen. Major characteristics of cathepsin L are the high activity against Z-Phe-Arg-methylcoumarylamide and sensitivity to the fast reacting irreversible inhibitor Z-Phe-Phe-diazomethane. In contrast, cathepsin S hydrolyzes Z-Phe-Arg-methylcoumarylamide only slowly and Z-Phe-Phe-diazomethane cannot be regarded as a potent inhibitor of this enzyme. The differences in the substrate specificity of cathepsin L from rat liver and cathepsin S from beef spleen are discussed in comparison with the substrate specificity of cathepsin B from rat and human liver and beef spleen.  相似文献   

9.
4-Nonylphenol (4-NP), a major by-product of alkylphenol ethoxylates, is used in several industries and as a consequence is quite common in rivers, estuaries and other aquatic environments that receive sewage discharges or are near offshore oil platforms. 4-NP is an environmental estrogen that also binds human and rodent Pregnane X-receptor (PXR), the orphan nuclear receptor that controls the expression of several detoxication genes in mammals, including several CYP3A and CYP2B family members. These P450s preferentially hydroxylate testosterone in the 6beta- and 16beta-positions, respectively. In this study, the effects of 4-NP on testosterone metabolism and hepatic CYP3A induction were compared to the effects of St. John's Wort (SJW), a well established mammalian PXR agonist, in winter flounder. Male winter flounder (Pleuronectes americanus) were injected with 100 mg/kg/day 4-NP or 500 mg/kg/day SJW or both (S and N) every 24 h. Forty-eight hours after the initial injections, flounder were euthanized. Western blots and testosterone 6beta-hydroxylation indicated that CYP3A was increased 50% by 4-NP, but was not affected by SJW. Testosterone 16beta-hydroxylase activity was also significantly increased in flounder treated with 4-NP (2.8 x), but not with SJW. This is not consistent with our hypothesis that both SJW and 4-NP would induce CYP3A. Subtractive hybridization was performed between control and 4-NP treated hepatic mRNA samples to isolate differentially expressed genes. Subtractive hybridization indicated that several acute phase proteins were altered by 4-NP. Quantitative real-time PCR (Q-PCR) confirmed 4-NP altered the expression of complement components C8b, cathepsin L, C-type lectin domain, FK506 binding protein 2 precursor (FKBP2) and an EST (expressed sequence tag). SJW and 4-NP treated flounder demonstrated similar induction profiles for the EST, cathepsin L and FKBP2, suggesting that SJW was at a sufficient dose to alter gene expression but not induce P450s. In conclusion, testosterone hydroxylase activity and Western blots indicate that SJW did not activate detoxication pathways in a similar manner to 4-NP.  相似文献   

10.
Fasciola hepatica, the liver fluke, secretes a cathepsin L cysteine proteinase. The enzyme is active over the pH range 5-9 and is remarkably stable at 37 degrees C, pH 7.0, in contrast to mammalian cathepsin Ls that are active in the acidic pH range and are inactivated within 15 min at neutral pH. The liver fluke proteinase is also very tolerant of organic solvents, particularly dimethylformamide. However, it is completely inactivated by 1 mM Hg(2+) and adversely affected by other heavy metals and divalent cations. Addition of glycerol and EDTA enhanced the liver fluke enzyme's stability at 50 degrees C, while glucose and glycerol protected the enzyme from inactivation by repeated freeze-thawing. The high stability of liver fluke cathepsin L suggests that it may have potential for use in bioindustrial applications.  相似文献   

11.
12.
Proteolytically active complexes of the proteinase cathepsin L, with an endogenous inhibitor of cysteine proteinases, were purified from sheep liver. The complexes were active against the synthetic substrate Z-Phe-Arg-NHMec and also the proteins azocasein and gelatin. The composition of the complexes was demonstrated by Western blotting, after reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with monospecific antibodies raised against purified sheep liver cathepsin L and purified sheep liver cysteine proteinase inhibitor (probably stefin B). Similar complexes could be formed in vitro, by coincubation of purified sheep liver cathepsin L with the purified sheep liver cystatin at a pH of 5.5 or higher.  相似文献   

13.
The complete nucleotide sequence of a novel cathepsin cDNA derived from rat placenta was determined and is termed cathepsin Q. The predicted protein of 343 amino acid is a member of the family C1A protease related to cathepsin L. Rat cathepsin Q and its mouse counterpart were found highly expressed in placenta, whereas no detectable levels were found in lung, spleen, heart, brain, kidney, thymus, testicle, liver, or embryonic tissues. It is predicted that cathepsin Q will differ in catalytic specificity to another placental-specific protease, cathepsin P, indicating that these enzymes will have unique proteolytic functions in extra-embryonic tissues.  相似文献   

14.
In this study, we have cloned a cDNA encoding for cathepsin X (PoCtX) from the olive flounder, Paralichthys olivaceus. The presence of an HIP motif, which is conserved in the unique cathepsin X family, PoCtX, clearly shows its relation to the cathepsin X group, apart from the cathepsin L or B subfamily. The results of RT-PCR and real-time PCR analyses revealed ubiquitous PoCtX expression in normal and LPS-stimulated tissues. The cDNA encoding for the proenzyme of PoCtX (proPoCtX) was expressed in Escherichia coli as a 57 kDa fusion protein with glutathione S-transferase. Its activity was quantified via the cleavage of the synthetic fluorogenic peptide substrate Z-Phe-Arg-AMC, and the optimal pH for the protease activity was 5. The recombinant proPoCtX was inhibited by antipain and leupeptin. The PoCtX protein from P. olivaceus muscle extracts was purified 9.48-fold via a one-step purification process using a DEAE-Sephagel high performance liquid chromatography (HPLC) column. Western blotting and ELISA were conducted in order to evaluate the reaction ability and detection-specificity of the anti-proPoCtX polyclonal antibody to native PoCtX and recombinant proPoCtX proteins. Our findings indicate that the P. olivaceus cathepsin X is highly conserved within the cathepsin X subfamily in terms of its amino acid sequence, tissue expression, and biochemical activity.  相似文献   

15.
Purification and tissue distribution of rat cathepsin L   总被引:5,自引:0,他引:5  
Cathepsin L was purified to apparent homogeneity from rat kidney. The molecular weight of the enzyme was estimated to be 30,000, but part of the enzyme was found to consist of two polypeptide chains of Mr 25,000 and 5,000. Antibody against rat kidney cathepsin L did not cross-react with rat cathepsin B or H and detected only cathepsin L in crude rat tissue preparations on immunoblotted sheets. The concentrations of cathepsin L in various rat tissues and peripheral blood cells of rats were determined by a sensitive immunoassay, in which the minimum detectable amount of cathepsin L was 20 pg/assay. The concentration of cathepsin L was found to be highest in the kidneys, where it was more than 3 times higher than in the liver, spleen, lungs, and brain. Nervous tissues, especially the cerebellar cortex, also contained fairly high concentrations of cathepsin L, but the heart, skeletal muscle, and gastrointestinal tract contained low concentrations, as did peripheral blood cells. The cathepsin L content of macrophages was 20% of that of cathepsin B. The concentrations of cathepsin L in lymphocytes, neutrophils, and erythrocytes were 10%, 20%, and less than 0.2%, respectively, of those in resident macrophages.  相似文献   

16.
The complete nucleotide sequence of a novel cathepsin cDNA derived from mouse placenta was determined and is termed cathepsin M. The predicted protein of 333 amino acid is a member of the family C1A proteases and is related to mouse cathepsins L and P. Mouse cathepsin M is highly expressed in placenta, whereas no detectable levels were found in lung, spleen, heart, brain, kidney, thymus, testicle, liver, or embryo. Phylogenic analyses of the sequences of human and mouse cathepsins show that cathepsin M is most closely related to cathepsins P and L. However, the differences are sufficiently large to indicate that the enzymes will be found in other species. This is in contrast to human cathepsins L and V, which probably resulted from a gene duplication after divergence of mammalian species.  相似文献   

17.
18.
Elevated activities of cysteine proteinases such as cathepsins B and L and cancer procoagulant have been linked to tumor malignancy. In the present study we examined the hypothesis that these elevated activities could be due to impaired regulation by the endogenous low molecular mass cysteine proteinase inhibitors (cystatins). Inhibitors from human sarcoma were compared to those from human liver, a normal tissue in which the inhibitors had been characterized previously. An extract of cystatins from sarcoma was less effective against papain and cathepsin B (liver or tumor) than was an extract from liver. This reduced inhibitory capacity in sarcoma was not due to a reduction in either the concentrations or specific activities of the cystatins or an absence of any family or isoform of cystatins. We purified two members of the cystatin superfamily (stefin A and stefin B) to homogeneity and determined their individual inhibitory properties. Stefins B from liver and sarcoma exhibited comparable inhibition of papain and cathepsin B. In contrast, stefin A from sarcoma exhibited a reduced ability to inhibit papain, human liver cathepsins B, H and L and human and murine tumor cathepsin B. The Ki for inhibition of liver cathepsin B by sarcoma stefin A was 10-fold higher than that for inhibition of liver cathepsin B by liver stefin A, reflecting a reduction in the rate constant for association and an increase in the rate constant for dissociation. Cancer is now the third pathologic condition reported to be associated with alterations in cystatins, the other two being amyloidosis and muscular dystrophy.  相似文献   

19.
Cathepsins B and L were purified from human kidney. SDS/polyacrylamide-gel electrophoresis demonstrated that cathepsins B and L, Mr 27000-30000, consist of disulphide-linked dimers, subunit Mr values 22000-25000 and 5000-7000. The pH optimum for the hydrolysis of methylcoumarylamide (-NHMec) substrates (see below) is approx. 6.0 for each enzyme. Km and kcat. are 252 microM and 364s-1 and 2.2 microM and 25.8 s-1 for the hydrolysis of Z-Phe-Arg-NHMec (where Z- represents benzyloxycarbonyl-) by cathepsins B and L respectively, and 184 microM and 158 s-1 for the hydrolysis of Z-Arg-Arg-NHMec by cathepsin B. A 10 min preincubation of cathepsin B (40 degrees C) or cathepsin L (30 degrees C) with E-64 (2.5 microM) results in complete inhibition. Under identical conditions Z-Phe-Phe-CHN2 (0.56 microM) completely inhibits cathepsin L but has little effect on cathepsin B. Incubation of glomerular basement membrane (GBM) with purified human kidney cathepsin L resulted in dose-dependent (10-40 nM) GBM degradation. In contrast, little degradation of GBM (less than 4.0%) was observed with cathepsin B. The pH optimum for GBM degradation by cathepsin L was 3.5. Cathepsin L was significantly more active in degrading GBM than was pancreatic elastase, trypsin or bacterial collagenase. These data suggest that cathepsin L may participate in the lysosomal degradation of GBM associated with normal GBM turnover in vivo.  相似文献   

20.
We assessed the putative physiological roles of cathepsin K from a flatfish, olive flounder. We cloned a cDNA encoding for cathepsin K (PoCtK), a cysteine protease of the papain family from olive flounder, Paralichthys olivaceus. The tissue-specific expression pattern of PoCtK, determined via real-time PCR analysis, revealed ubiquitous expression in normal tissues with high levels of expression in the spleen and bone marrow. However, PoCtK expression was significantly increased in the muscle and gill at 3–24 h post-injection with bacterial lipopolysaccharide (LPS). The cDNA encoding for the mature enzyme of PoCtK was expressed in Escherichia coli using the pGEX-4T-1 expression vector system. Its activity was quantified via the cleavage of the synthetic peptide Z-Gly-Pro-Arg-MCA, zymography, and the collagen degradation assay. The optimum pH for the protease activity was 8, and the recombinant PoCtK enzyme degraded collagen types I, II, III, IV, and VI and acid-soluble collagen from olive flounder muscle in the presence of chondroitin 4-sulphate (C-4S). Therefore, our data indicate that cathepsin K may play a role in the immune system of fish skin and muscle, in addition to its principal bone-specific function as a collagenolytic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号