首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The yeast Candida tropicalis, isolated from petroleum-contaminated soil in India, was found to be the potent producer of biosurfactant in mineral salt media containing diesel oil as the carbon source and found to be an efficient degrader of diesel oil (98%) over a period of 10 days. The crude biosurfactant decreased the surface tension of cell-free broth, 78 to 30 mN/m, with a large oil displacement area and highly positive drop collapse test. The crude biosurfactant was purified using silica gel column chromatography followed by dialysis. With the use of Fourier transform infrared (FT-IR) spectroscopy, in combination with gas chromatography–mass spectrometry (GC-MS) analysis, chemical structures of the purified biosurfactant was identified as sophorolipid species. Involvement of biosurfactant in physiological mechanism of diesel adsorption on yeast cell surface was characterized based on zeta potential. When diesel oil was emulsified with biosurfactant, the surface charge of the diesel was modified, resulting in more adsorption of diesel on yeast cell surface. Biosurfactant production by yeast species was monitored using scanning electron microscopy (SEM) analysis and found that yeast species could form thick mat of mucilaginous biosurfactant that could interconnect the individual cells. Uptake of diesel oil by C. tropicalis was elucidated through transmission electron microscopy (TEM) analysis. Interestingly, it was observed that internalization of diesel oil droplet was taking place, suggesting a mechanism similar in appearance to active pinocytosis.  相似文献   

2.
An acenaphthene-degrading bacterium putatively identified as Pseudomonas sp. strain KR3 and isolated from diesel-contaminated soil in Lagos, Nigeria was investigated for its degradative and biosurfactant production potentials on crude oil. Physicochemical analysis of the sampling site indicates gross pollution of the soil with high hydrocarbon content (2100 mg/kg) and detection of various heavy metals. The isolate grew luxuriantly on crude oil, engine oil and acenaphthene. It was resistant to septrin, amoxicillin and augmentin but was susceptible to pefloxacin, streptomycin and gentamycin. It was also resistant to elevated concentration of heavy metals such as 1–15 mM lead, nickel and molybdenum. On acenaphthene, the isolate exhibited specific growth rate and doubling time of 0.098 day?1 and 3.06 days, respectively. It degraded 62.44% (31.2 mg/l) and 91.78% (45.89 mg/l) of 50 mg/l acenaphthene within 12 and 21 days. On crude oil, the specific growth rate and doubling time were 0.375 day?1 and 1.85 days with corresponding percentage degradation of 33.01% (903.99 mg/l) and 87.79% (2403.71 mg/l) of crude oil (2738.16 mg/l) within 9 and 18 days. Gas chromatographic analysis of residual crude oil at the end of 18 days incubation showed significant reductions in the aliphatic, alicyclic and aromatic fractions with complete disappearance of benzene, propylbenzene, pristane, phytane, and nC18-octadecane fractions of the crude oil. The isolate produced growth-associated biosurfactant on crude oil with the highest emulsification index (E24) value of 72% ± 0.23 on Day 10 of incubation. The partially purified biosurfactant showed zero tolerance for salinity and had its optimal activity at 27°C and pH 2.0.  相似文献   

3.
Aims: Pseudomonas aeruginosa LBI (Industrial Biotechnology Laboratory) was isolated from hydrocarbon-contaminated soil as a potential producer of biosurfactant and evaluated for hydrocarbon biodegradation. The emulsifying power and stability of the product was assessed in the laboratory, simulating water contamination with benzene, toluene, kerosene, diesel oil and crude oil at various concentrations. Methods and Results: Bacteria were grown at 30°C and shaken at 200 rpm for 168 h, with three repetitions. Surface tension, pH and biosurfactant stability were observed in the cell-free broth after 168 h of incubation. The strain was able to produce biosurfactant and grow in all the carbon sources under study, except benzene and toluene. When cultivated in 30% (w/v) diesel oil, the strain produced the highest quantities (9·9 g l−1) of biosurfactant. The biosurfactant was capable of emulsifying all the hydrocarbons tested. Conclusion: The results from the present study demonstrate that Ps. aeruginosa LBI can grow in diesel oil, kerosene, crude oil and oil sludge and the biosurfactant produced has potential applications in the bioremediation of hydrocarbon-contaminated sites. Significance and Impact of the Study: Pseudomonas aeruginosa LBI or the biosurfactant it produces can be used in the bioremediation of environmental pollution induced by industrial discharge or accidental hydrocarbon spills.  相似文献   

4.
High concentrations of 422 g sophorolipids l–1 were produced using a two-stage cultivation process: first deproteinized whey concentrate (DWC) containing 110 g lactose l–1 was used for cultivation of the yeast Cryptococcus curvatus ATCC 20509, resulting in 34 g dry weight l–1, 20 g single-cell oil l–1 and reducing the chemical oxygen demand (COD) from 159 g l–1 to 35 g oxygen l–1. Afterwards cells were disrupted by passing the cell suspension directly through a high pressure laboratory homogeniser. After autoclavation, the resulting crude cell extract containing the single-cell oil served as substrate for growth of Candida bombicola ATCC 22214 and for sophorolipid production in a second stage. When the single-cell oil was consumed, repeated feeding of 400 g rapeseed oil l–1 was started increasing the yield of sophorolipids to 422 g l–1. A simple technique for product isolation, sedimentation, could be used to harvest the crude sophorolipids. © Rapid Science Ltd. 1998  相似文献   

5.
高效生物表面活性剂产生菌筛选及其性质研究   总被引:1,自引:0,他引:1  
目的:获得产高效生物表面活性剂的菌株并获得优化培养基。方法:通过从山东文登某加油站附近长期污染富含油质的土壤中逐步采用富集培养基和平板筛选培养基分离筛选菌株并进行优化培养寻找最优生长培养和高产生物表面活性剂的条件。结果:筛选出产表面活性剂的微生物12株,分别命名为BSF1#-BSF12#,从中筛选出1株高效表面活性剂产生菌BSF8#,优化培养结果表明BSF8#的最佳生长pH在7.5左右,最佳碳源为葡萄糖,最佳氮源为蛋白胨,BSF8#培养基中最佳NaCl浓度为2g/L。BSF8#菌株可将发酵液的表面张力由最初的48.29mN/m降到27.79 mN/m,上层乳化状发酵液的排油圈最大直径超过7.5cm,并经红外光谱分析确定其生物表面活性剂为1个糖肽类化合物。结论:BSF8#菌株产生的生物表面活性剂活性突出,有较大的开发潜力。  相似文献   

6.
Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38°C, and 30‰ salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.  相似文献   

7.
The pH-stat fed-batch culture of Pseudomonas aeruginosa YPJ-80 was done to produce a rhamnolipid biosurfactant. With glucose as the sole carbon source, the final concentrations of cells and rhamnolipid biosurfactant obtained in 25 h were 25 g cell dry weight/l and 4.4 g/l, respectively.  相似文献   

8.
Production of a Biosurfactant from Torulopsis bombicola   总被引:8,自引:5,他引:3       下载免费PDF全文
Two types of carbon sources—carbohydrate and vegetable oil—are necessary to obtain large yields of biosurfactant from Torulopsis bombicola ATCC 22214. Most of the surfactant is produced in the late exponential phase of growth. It is possible to grow the yeast on a single carbon source and then add the other type of substrate, after the exponential growth phase, and cause a burst of surfactant production. This product is a mixture of glycolipids. The maximum yield is 70 g liter−1, or 35% of the weight of the substrate used. An economic comparison demonstrated that this biosurfactant could be produced significantly more cheaply than any of the previously reported microbial surfactants.  相似文献   

9.
ABSTRACT

Lead contamination in soil due to anthropogenic activities has amplified and therefore, remediation is of prime significance due to its nonbiodegradability and toxicity effects. This study focuses on lead removal from the soil collected from a rifle range using biosurfactants produced from native microorganisms and edible oils. Native microorganisms in contaminated soil served as a source for biosurfactant production aided by edible vegetable oils such as palm oil and gingelly oil. Preliminary isolation and characterization studies indicated the presence of Pseudomonas aeruginosa that produced biosurfactant and removed lead simultaneously. Batch adsorption experiments showed 96%–99.6% of lead adsorption following Langmuir isotherm model. Lead desorption of 23.6% occurred without biosurfactant. Whereas in the presence of biosurfactants, enhanced desorption of 62.3% was observed. Of both palm oil and gingelly oil derived biosurfactants, the former reached a lead removal efficiency of 93.6% indicating the feasibility and effectiveness of the biosurfactants for contaminated site remediation.  相似文献   

10.
AIM: Production and characterization of biosurfactant from renewable sources. METHODS AND RESULTS: Biosurfactant production was carried out in 3-l fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (9.8 mg ml(-l)) and biosurfactant production (6.4 mg ml(-l)) occurred with peanut oil cake at 120 and 132 h, respectively. Chemical characterization of the biosurfactant revealed that it is a glycolipopeptide with chemical composition of carbohydrate (40%), lipid (27%) and protein (29%). The biosurfactant is able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene; the emulsification activity was comparatively higher than the activity found with Triton X-100. CONCLUSION: This study indicates the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources like waste motor lubricant oil and peanut oil cake. Emulsification activity found with the biosurfactant against different hydrocarbons showed the possibility of the application of biosurfactants against diverse hydrocarbon pollution. SIGNIFICANCE AND IMPACT OF THE STUDY: The data obtained from the study could be useful for large-scale biosurfactant production using economically cheaper substrates. Information obtained in emulsification activity and laboratory-scale experiment on bioremediation inferred that bioremediation of hydrocarbon-polluted sites may be treated with biosurfactants or the bacteria that produces it.  相似文献   

11.
一种脂肽类生物表面活性剂产生菌的筛选   总被引:3,自引:0,他引:3  
从油田地层水中筛选分离得到1株能够产生表面活性剂的细菌,经鉴定为枯草芽孢杆菌。分析了该菌株的生理形态和生长特性,以及该菌株代谢产生的生物表面活性剂的性质。薄层色谱与原位水解显色和红外光谱分析表明,培养后菌株代谢产生的生物表面活性为脂肽。它能使水的表面张力降低到26mN/m,其临界胶束浓度为0.025mg/mL。  相似文献   

12.
产生物表面活性剂菌株的选育   总被引:1,自引:0,他引:1  
以原油为碳源进行微好氧培养筛选到1株产生物表面活性剂的兼性厌氧菌I,其可将界面张力由16.36mN/m降到6.49mN/m。以其为出发菌株,经过紫外和甲基磺酸乙酯复合诱变,得到1株性能优良的变异新菌株,其降低界面张力的能力显著提高,界面张力降低了32.8%。性能评价表明,该菌株能在72℃高温和30%矿化度下生长。有望用于微生物采油研究。  相似文献   

13.
Background, Goal and Scope The palm oil industry is one of the leading industries in Malaysia. With a yearly production of more than 13 million tons of crude palm oil (CPO) and plantations covering 11% of the Malaysian land area it is an industry to be reckoned with, also when it comes to environmental impacts. One way to describe and present the environmental impacts is through a life cycle assessment, LCA. This assessment aims to introduce the concept of LCA and perform a screening LCA on crude palm oil production in Malaysia including the stages of plantation, transport and milling. The assessment is largely based on general data and is thus meant to function as an indication of the environmental threads posed by CPO production and as a guideline to CPO producers and local universities on how to perform an LCA on a palm oil scenario. Due to the general data background the results of this report should not be quoted directly for decision making. The Functional Unit, to which all masses and emissions in this assessment have been adjusted, is the production of 1000 kg of CPO in Malaysia. Method Initially an overview of palm oil production was obtained and the outlines and borders of the assessment were determined along with the specific goal and scope of the assessment. The data for the assessment was collected from three different sources: - 1. Earlier studies and statistics on palm oil production in Malaysia - 2. Studies on similar processes, when palm oil related processes were not available - 3. General data from the SimaPro 5 database - The European Eco-Indicator 99 method and European databases included in the LCA software SimaPro 5 have been used for the impact calculations. Results and Discussion The impact processes related to the plantation are the on-site energy use (mainly diesel) and the production of artificial fertilizer. Pesticide use contributes a minor impact due to widely used integrated biological poet management. For transportation the only impact is from combustion of diesel and at the mill the boiler is the sole significant contributor – positively through electricity production and negatively by emissions from the boiler. Impacts from POME (Palm Oil Mill Effluent) are not dealt with in the main assessment, but touched upon in alternative scenarios. The results clearly show that fertilizer production is the most polluting process in the system followed by transportation and the boiler emissions at a tie. The most significant impacts from the system are respiratory inorganics and depletion of fossil fuels, of which the boiler emission is the main responsible for the prior and fertilizer production and transportation are responsible for the latter. It is also evident from the results that crude palm oil production is a significant environmental impact generator in Malaysia due to the vast production quantities. Alternative scenarios revealed that there are significant impact savings to be made by introduction of environmental investments, both regarding the overall impacts and in particularly regarding CO2 emissions. Conclusion A screening LCA was successfully conducted on the Malaysian crude palm oil production thus promising potentials for the palm oil industry to conduct their own inventories and assessments using specific company data. Crude palm oil production in Malaysia is responsible for app. 3.5% of the total environmental impacts in the country and must thus be given attention to reduce impacts. Alternatives such as optimized use of organic fertilizer, environmentally friendlier artificial fertilizer production, rail transport, approved filters at the mill boiler stack and biogas harvest from POME digestion must thus be promoted in the industry. Recommendation . The Malaysian palm oil industry should take steps towards introducing LCA. Exhaustive inventories are likely to open the eyes of many companies towards implementing environmental investments and improve the international competitiveness. In order to retrieve results with a greater accuracy in the future, databases must be created containing life cycle data from Malaysian scenarios and normalization and weighting factors must be designed to reflect Malaysian conditions. The Malaysian authorities must create incentives through increased tariffs on electricity and diesel and/or financial support for cleaner technology investments.  相似文献   

14.
In an effort to expand the technology of bioremediation of hydrophobic organic compounds, microencapsulation technology was investigated as a method of biosurfactant delivery to contaminated sites. Microparticles are composed of active or inactive materials encapsulated in a polymer coating designed for controlled release of the encapsulated substance. Surface morphology and release profiles of microparticles containing rhamnolipid biosurfactant were investigated for development of a controlled release bioremediation scheme. The evaluation was conducted under laboratory conditions with 45 mg/ml concentration of biosurfactant and a representative environmental medium; using artificial salt water (35 ppt) and deionized water medium as a control. The microparticles were prepared by the water–in–oil–in–water double emulsion solvent evaporation method. The surface morphology was examined after initial preparation, at 0, 15 and 31 days incubation, using light microscopy. Light microscopic images revealed smooth, spherical microparticles that degraded over time in the media. Results indicated that microparticle degradation occurred mostly in the salt water environment, suggesting that the presence of salts (Na+ and Cl? ions) in the water enhanced microparticle degradation. The deionized water environment achieved polymeric degradation that was similar to what was generally reported in the literature. Biosurfactant release was evaluated for polymer molecular weights (Mw) 40, 80, and 200 kDa, in salt water and deionized water media, each of which showed a high initial burst release of biosurfactant, followed by pulse releases that occurred over the 31 day period. The highest level of biosurfactant release of all the molecular weights tested occurred in the Mw 80 kDa. The release from Mw 40 kDa and Mw 200 kDa was not significantly different (P > 0.05). The results showed that this technology may be useful for enhancing bioremediation of residual hydrophobic organic contaminants (HOC) in estuarine and marine environments.  相似文献   

15.
Biosurfactants are economically most sought after biotechnological compounds of the 21st century. However, inefficient bioprocessing has mitigated the economical commercial production of these compounds. Although much work is being done on the use of low-cost substrates for their production, a paucity of literature exists on the upcoming bioprocess optimization strategies and their successes and potential for economical biosurfactant production. This review discusses some of the latest developments and most promising strategies to enhance and economize the biosurfactant production process. Recent market analysis, developments in the field of optimally formulated cost credit substrates for enhanced product formation and subsequent process economization are few of the critical aspects highlighted here. Use of nanoparticles and coproduction of biosurfactant along with other commercially important compounds like enzymes, are other upcoming bioprocess intensification strategies. The recent developments discussed here would not only give an overview of pertinent parameters for economic biosurfactant production but would also bring to fore multiple strategies that would open up new avenues of research on biosurfactant production. This would go a long way in making biosurfactants a commercially successful compound of the current century.  相似文献   

16.
从石油受污环境中分离筛选得到一株高产鼠李糖脂(rhamnolipid,RL)的假单胞菌(Pseudomonas sp.)B3。在游离细胞合成鼠李糖脂的基础上,应用包埋与交联相结合的复合固定化方法制备出性能优良的固定化细胞。以二次回归方程预测模型为基础,对发酵条件进行优化,得到B3固定化细胞合成RL的最优条件为:接种量15%,初始pH 7.0,合成温度38℃,120r·min-1振荡培养100h,RL的产量达到4 843.25mg·L-1,比游离细胞提高56.42%。制备的固定化细胞连续使用3个发酵周期,RL的产量均保持在4 517.75mg·L-1以上,说明B3固定化细胞具有用于连续发酵合成RL的可行性。  相似文献   

17.
Oil palm biomass is widely known for its potential as a renewable resource for various value‐added products due to its lignocellulosic content and availability. Oil palm biomass biorefinery is an industry that comes with sociopolitical benefits through job opportunities, as well as potential environmental benefits. Many studies have been conducted on the technological advancements of oil‐palm biomass‐derived renewable materials, which are discussed comprehensively in this review. Recent technological developments have made it possible to bring new and innovative technologies to commercialization, such as compost, biocharcoal, biocomposites, and bioplastics.  相似文献   

18.
19.
20.
Dwivedi  A.  Kumar  A.  Bhat  J. L. 《Microbiology》2019,88(1):87-93
Microbiology - Present study was carried out to isolate the effective bacterial strains for the degradation of petroleum hydrocarbons and biosurfactant production. The bacterial strains were...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号