首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we confirmed the ability of the 2-kb promoter fragment of the chicken ovalbumin gene to drive tissue-specific expression of a foreign EGFP gene in chickens. Recombinant lentiviruses containing the EGFP gene were injected into the subgerminal cavity of 539 freshly laid embryos (stage X). Subsequently the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Twenty-four chicks (G0) were hatched and screened for EGFP with PCR. Two chicks were identified as transgenic birds (G1), and these founders were mated with wild-type chickens to generate transgenic progeny. In the generated transgenic hens (G2), EGFP was expressed specifically in the tubular gland of the oviduct. These results show the potential of the chicken ovalbumin promoter for the production of biologically active proteins in egg white.  相似文献   

2.
3.
A critical problem in the production of transgenic animals is the uncontrolled constitutive expression of the foreign gene, which occasionally results in serious physiological disorders in the transgenic animal. In this study, we report successful production of transgenic chickens that express the human erythropoietin (hEPO) gene under the control of a tetracycline-inducible promoter. A recombinant Moloney murine leukemia virus (MoMLV)-based retrovirus vector encapsidated with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of unincubated chicken embryos (stage X). Out of 198 injected eggs, 15 chicks hatched after 21 days of incubation and 14 hatched chicks expressed the vector-encoded hEPO gene when fed doxycycline, a tetracycline derivative, without any significant physiological dysfunctions. The expression of hEPO reverted to the pre-induction state by removing doxycycline from the diet. The biological activity of the hEPO produced in the transgenic chickens was comparable to commercially available CHO cell-derived hEPO. Successful germline transmission of the transgene was also confirmed in G1 transgenic chicks produced from crossing G0 transgenic roosters with non-transgenic hens. Tetracycline-inducible expression of the hEPO gene was also confirmed in the blood and eggs of the transgenic chickens.  相似文献   

4.
Extracellular superoxide dismutase (EC-SOD) is a metalloprotein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white. [BMB Reports 2013; 46(8): 404-409]  相似文献   

5.
The chicken is a promising candidate as a bioreactor for the economical mass production of human therapeutic proteins. Here, we report the successful generation of transgenic chickens that produce high concentrations of human erythropoietin (hEPO) in the blood. Using a Moloney murine leukemia virus (MoMLV)-based pseudotyped retrovirus vector packaged with vesicular stomatitis virus G glycoprotein (VSV-G), the hEPO gene under the control of cytomegalovirus (CMV) promoter was introduced to the blastoderm of freshly laid chicken eggs (stage X). Out of 200 injected eggs, 12 chicks were hatched after 21 days of incubation, and all of the G0 hatched chicks expressed the vector-encoded hEPO gene. One of the G0 roosters successfully transmitted the hEPO gene to its G1 progeny by crossing with non-transgenic hens. The concentration of hEPO protein in the chicken blood serum was as high as 90 μg/mL. Although humans and chickens belong to different classes of the phylogenetic tree, human EPO caused devastating problems in transgenic chickens, including sudden death, polycythemia, vasodilation, and so on, which may be due to the uncontrolled constitutive expression of exogenous protein in the chicken body. Despite many disorders, however, we were able to generate chicks of G2 generation sired by a rooster of G1 generation confirming successful establishment of a new line of transgenic chicken characterized by high expression of the hEPO gene. With these chickens, we believe that studies on the evaluating the possibilities of the transgenic animal-mediated bio-pharming and on the hEPO-induced physiological side effects will be greatly facilitated.  相似文献   

6.
There is much interest in using chickens as “bioreactors” to produce large quantities of biopharmaceuticals. However, transient expression of foreign genes have been known to cause low efficiency of obtaining transgenic offspring, especially when using nonviral vectors. In present study, a transgenic chicken model was investigated to determine whether an exogenous gene can be expressed stably and transferred to its offspring through a matrix attachment region (MAR)-mediated non-viral vector using the eGFP marker gene. The eukaryotic expression vector pEGFP-N1-MAR, which contains the eGFP gene and MAR, was constructed and transfected into a chicken stage-X blastoderm to produce a G0 generation of transgenic chickens. The hatchabilities of different injection regions were tested; 18 of the 40 eggs injected with pEGFPN1- MAR in the area opaca hatched after 21 days of incubation, and had a hatchability rate of 45%. By contrast, eggs injected at the area pellucida did not hatch. Results from the fluorescence signal detection and polymerase chain reaction (PCR) verified that four hatched chicks from the G0 generation expressed the eGFP gene. Furthermore, fluorescence signal detection results indicated that 2 of the 65 chicks from the G1 generation expressed the eGFP gene. We conclude that MAR facilitates the production of transgenic chickens; pEGFP-N1-MAR application is a novel approach that can produce transgenic chicken offspring.  相似文献   

7.
Here, we successfully demonstrate expression of the EGFP (enhanced green fluorescence protein) gene in chickens using replication-defective MLV (murine leukemia virus)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G glycoprotein). The recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). After 12 days incubation, all of the eight living embryos assayed were found to express this vector-encoded EGFP gene, which was under the control of the RSV (Rous Sarcoma Virus) promoter, in diverse organ tissues, including head, beak, neck, wing, hock, tail, toes, heart, amnion, and yolk sac. Surprisingly, despite the presumed cytotoxicity of EGFP, some embryos hatched and survived and these had prominent green fluorescent spots, both in internal organs and externally.  相似文献   

8.
为了建立一种用于研究肌肉和心脏发育及其相关疾病的绿色荧光蛋白(enhanced green fluorescent protein,EGFP)转基因斑马鱼品系,本研究使用斑马鱼ttn.2基因编码区上游启动子序列和绿色荧光蛋白基因编码序列构建了重组表达载体,并将该载体和Tol2转座酶的加帽mRNA显微共注射入斑马鱼1-细胞期胚胎,通过荧光检测、遗传杂交筛选和分子鉴定等方法,成功建立了能稳定遗传的Tg(ttn.2:EGFP)转基因斑马鱼品系。荧光表达分析及原位杂交分析结果表明,绿色荧光信号在斑马鱼肌肉和心脏组织中特异表达模式与ttn.2基因的mRNA表达一致。通过反向PCR鉴定转基因表达载体在F1代斑马鱼品系中的随机整合位点,结果表明:No.33转基因品系的EGFP基因整合在斑马鱼的4号和11号染色体上,No.34转基因品系则整合在1号染色体上。该荧光转基因斑马鱼品系Tg(ttn.2:EGFP)的成功构建为肌肉和心脏发育以及相关疾病研究提供了一个新的理想实验模型。此外,绿色荧光强烈表达的斑马鱼品系还可以作为一种新的观赏鱼。  相似文献   

9.
We report here the generation of transgenic chickens that produce human granulocyte-colony stimulating factor (hG-CSF) using replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G). The recombinant retrovirus was injected beneath the blastoderm of nonincubated chicken embryos (stage X). Out of 140 injected eggs, 17 chicks hatched after 21 days of incubation and all hatched chicks were found to express vector-encoded hG-GSF gene. The biological activity of the recombinant hG-CSF was significantly higher than its commercially derived E. coli-derived counterpart. Successful germline transmission of the transgene was also confirmed in G(1) transgenic chicks produced from the cross of Go transgenic roosters with nontransgenic hens, but most of the G(1) progeny were dead within 1 month of hatching.  相似文献   

10.
The present paper describes the expression of a target fusion gene, WAP/hGH fused to the EGFP-expressing gene in transgenic mice derived from the transfer of transgenic embryos selected because of their expression of enhanced green fluorescent protein (EGFP). The 6.7-kb fusion gene was microinjected as a single cassette gene construct into the pronuclei of mouse zygotes. The surviving embryos were cultured and were classified according to the EGFP expression patterns at the morula or blastocyst stage. After the transfer of embryos with uniform-expression or mosaic-expression of EGFP, transgenesis occurred in 85.7% to 86% or 44.1% to 44% of the pups, respectively. No transgenic pups were derived from EGFP negative embryos. In the transgenic females, EGFP was ubiquitously expressed under the control of the CAG promoter, and hGH was expressed under the control of the WAP promoter in an appropriate fashion: hGH was secreted into the milk of lactating transgenic females. The presence or absence of the expression of EGFP coincided with that of the hGH gene in the transgenic mice. The present cassette gene construct is a useful example for circumventing the routine analyses of DNA and RNA required for the generation and maintenance of transgenic lines.  相似文献   

11.
The RNA interference technique is a powerful tool to understand gene function. Intriguingly, RNA interference cannot only be used for cells in vitro, but also in living organisms. Here, we have adapted the method for use in the chick embryo. However, this technique is limited by the uncertainty in predicting the RNAi transfection efficiency and site in the embryo. Hence, we elaborated a modified vector system, pEGFP-shRNA, which can coexpress enhanced green fluorescent protein (EGFP) and short hairpin RNA (shRNA) simultaneously to facilitate analysis of gene silencing in chicken embryos. We tested the silencing of two highly conserved genes (cAxin2, cParaxis), which play crucial roles in chicken embryonic developmental processes. For each target gene, four to five small DNA inserts, each of them encoding one shRNA, were selected and cloned individually to the vector downstream of the Pol III promoter (either human H1 or U6 promoter), which shared with highly conserved motifs in human and chicken. The pEGFP-shRNA constructs were electroporated into the neural tube or somites. After subsequent re-incubation of 24 h, the EGFP expression, with green fluorescent signal, indicated the transfected regions in the neural tube or somites. The EGFP expressing embryos were further submitted into the process of in situ hybridization for examination of the silencing effects. The results show that the EGFP signal in transfected areas correlated with the silencing of the target genes (cAxin2, cParaxis). The cAxin2 expression was inhibited by shRNAs of either targeting the RGS domain or the DAX domain coding region. The cParaxis mRNA level in transgenic somites and the related migratory myogenic population was also reduced. The results suggest that our novel dual expression EGFP-shRNA system opens a new possibility to study gene function in a convenient and efficient way.  相似文献   

12.
We have established a reliable method that uses the EGFP (Enhanced Green Fluorescent Protein) gene as a marker for selecting transgenic embryos from preimplantation embryos. Embryos that were subjected to the pronuclear microinjection of the CMV/β‐actin/EGFP fusion gene were cultured in vitro until they developed into the morulae‐ or blastocyst‐stage. The expression of EGFP was easily observed by a fluorescent microscopy. There appeared to be no damage to the in vivo developmental ability of the embryos in response to the EGFP excitation light, which utilized an IB filter for a period of 30 min. Modified PCR analysis using Dpn I and Bal 31 digestion of the embryonic DNA showed that all of the embryos expressing EGFP in all their cells were transgenic, while more than half with mosaic expression of EGFP were not transgenic. Approximately 77% of pups born from the embryos that uniformly expressed the EGFP gene were transgenic, while 21.4% of pups from the embryos with mosaic expression were transgenics. The results showed that the use of EGFP as a marker is very useful and reliable for selecting transgenic embryos, and that it is important to transfer the embryos expressing EGFP in all their cells to obtain truly transgenic animals. Mol. Reprod. Dev. 54:43–48, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
We successfully replaced the ovalbumin gene of a magnum region in chickens with a human plasminogen activator. We constructed pL-eGFP, pL-tPAGFP and pL-2.8OVtPAGFP vectors and cultured 293FT chicken embryo fibroblasts, chicken primordial germ cells, Hela C127 cells, and oviduct epithelial cells. All vectors were expressed in the transfected cells, except pL-2.8OVtPAGFP vector, which was only expressed in oviduct epithelial cells. A lentivirus with pL-2.8OVtPAGFP was injected in fertilized eggs; 11 chicks hatched in the G? generation, four of them carried the tPAGFP. Two cockerels from the G? generation were crossed with four wild-type hens. Three chicks in G? carried the tPAGFP. We concluded that by using an oviduct-specific vector for transfection, human recombinant plasminogen activator protein can be expressed in the oviducts of laying hens. This character is inherited and can be reproduced with a need for repeated transfection.  相似文献   

14.
以增强型绿色荧光蛋白和萤火虫荧光素酶为报告基因,构建了鸡卵清蛋白启动子表达载体和慢病毒载体,以巨细胞病毒 (Cytomegalovirus,CMV)启动子表达载体为对照,转染或感染鸡原代输卵管上皮细胞、鸡胚成纤维细胞、鼠3T3-L1前脂肪细胞和牛乳腺上皮细胞,通过荧光和酶活性检测,旨在筛选出用于实现转基因鸡生物反应器的高效特异性表达载体。结果发现,鸡卵清蛋白启动子表达载体转染以上4种细胞后2种标记基因均有表达,没有表现出明显的细胞特异性,且荧光素酶检测结果表明其在各细胞组中表达活性都低于CMV启动子表达载体100倍以上;慢病毒载体感染以上4种细胞后2种标记基因均有表达,在鸡输卵管上皮细胞组感染单个细胞的病毒颗粒 (Multiplicity of infection,MOI) 为20时绿色荧光蛋白表达量就可以达到CMV启动子表达载体的水平。上述结果表明,基于卵清蛋白基因调控序列构建的表达载体无法实现外源基因的高效、特异性表达,而慢病毒载体在表达活性和广泛性上可以用于进行鸡输卵管生物反应器的研究。  相似文献   

15.
Most transgenic domestic animals are generated by direct microinjection of DNA fragments into zygote pronuclei. It has generally been assumed that the majority of integration events should occur prior to the first round of chromosomal DNA replication. The aim of this study was to investigate the expression of GFP in bovine preimplantation embryos by using a gfp reporter gene consisting of chicken beta-actin promoter, the CMV-IE enhancer, gfp cDNA (EGFP) (732 bp) and rabbit beta-globin polyadenylation sequences. In five experiments 302 bovine zygotes were injected while 75 served as a control. The fluorescence intensity was detected at 72 and 168 h following fertilization in bovine embryos injected with 3 ng/microl in experiments 1-3, and injected with 5 ng/microl in experiments 4-5. Eight embryos were considered as expressing green fluorescence protein; 2 of them were 100% fluorescent after microinjection of a higher dose of the DNA; one was 75%, two--50%, and three 25% transgenic. The mosaicism was assumed to be at 75%. The results indicated that the fluorescence could be analyzed at any time of bovine embryo development. It was therefore concluded, that chicken beta-actin promoter together with the CMV-IE enhancer would confer a strong expression of the gfp reporter gene in preimplantation bovine embryos. Therefore, using GFP that could be simply detected in live bovine (transgenic) embryos would be very promising in establishing transgenic lines of domestic animals producing in their fluids human therapeutic proteins.  相似文献   

16.
17.
Ma YZ  Ren Y  Zhou XY  Liu DJ  Xu RG 《动物学研究》2011,32(6):617-623
Human ALR gene sequence was amplified by PCR from human total DNA and inserted into pIRES(2)-EGFP vector. The bicistronic eukaryotic expression vector, pIRES-EGFP/ALR, expressing EGFP, Neo(r) and ALR genes was constructed. Sheep fetal fibroblast cells (sEFCs) were transfected with pIRES-EGFP/ALR by the induction of lipofectAMINE(TM). The positive cell clones were selected with medium containing G418 (800 μg/mL). The fluorescence of transgenic cells was examined with a confocal laser scanning microscope. The expression of ALR gene was tested by PCR, RT-PCR and immuno-histochemical staining. The transgenic cells were used as donors for nuclear transfer to enucleated ovine oocytes. Transgenic embryos were tested by confocal laser scanning microscope and immuno-histochemical staining. Results showed that the EGFP and ALR genes linked with IRES were coexpressed simultaneously in sFFCs; the blastocysts formed by nuclear transfer using tranfected donor cells are all transgenic blastocysts. EGFP, ALR and Neo(r) gene were all expressed in the transgenic embryos. In conclusion that a method to construct the positive embryos before pre-implantation which stably express ALR gene by the indication of EGFP expression has been successfully established. The application of this method can simplify the procedure of testing the targets and contribute to the efficiency increasing of transgenic domestic animal production.  相似文献   

18.
Silkworm transgenesis is now a routine method leading to a satisfactory yield of transformed animals and the reliable expression of transgenes during multiple successive generations. However, the screening of G1 transgenic individuals from numerous progeny has proved to be difficult and time‐consuming work. Previously, we characterized the promoter of heat shock protein 70 from Bombyx mori (bHsp70), which is ubiquitously expressed in all tissues and developmental stages. To investigate the utilization of the bHsp70 promoter to screen transgenic individuals, the EGFP marker gene was inserted into the piggyBac vector under the control of the bHsp70 promoter. Mixtures of the donor and helper vectors were micro‐injected into 3060 eggs of bivoltine silkworms (Keomokjam). EGFP fluorescence was observed in 17 broods of transgenic silkworms under a florescence stereomicroscope. Interestingly, this fluorescent marker protein was detected, not only in parts of the embryo segments on the seventh day of the G1 embryonic developmental stage, but also in a part of the body of G1 hatched larvae, in the middle silk gland of G1 fifth instar larvae, and in the wings of seven‐day‐old G1 pupae and G1 moths. Therefore, we suggest that the bHsp70 promoter can be used for the rapid and simple screening of transgenic silkworms.  相似文献   

19.
There is much interest in using farm animals as ‘bioreactors’ to produce large quantities of biopharmaceuticals. However, uncontrolled constitutive expression of foreign genes have been known to cause serious physiological disturbances in transgenic animals. The objective of this study was to test the feasibility of the controllable expression of an exogenous gene in the chicken. A retrovirus vector was designed to express GFP (green fluorescent protein) and rtTA (reverse tetracycline-controlled transactivator) under the control of the tetracycline-inducible promoter and the PGK (phosphoglycerate kinase) promoter, respectively. G0 founder chickens were produced by infecting the blastoderm of freshly laid eggs with concentrated retrovirus vector. Feeding the chickens obtained with doxycycline, a tetracycline derivative, resulted in emission of green body color under fluorescent light, and no apparent significant physiological dysfunctions. Successful germline transmission of the exogenous gene was also confirmed. Expression of the GFP gene reverted to the pre-induction levels when doxycycline was removed from the diet. The results showed that a tetracycline-inducible expression system in transgenic animals might be a promising solution to minimize physiological disturbances caused by the transgene.  相似文献   

20.
Luo C  Shen X  Rao Y  Xu H  Tang J  Sun L  Nie Q  Zhang X 《Molecular biology reports》2012,39(5):6283-6288
One duplicated segment on chicken Z chromosome is a causal mutation to the late-feathering phenotype. However, understanding biological process of the late-feathering formation is also of interest to chicken breeding and feather development theory. One hundred and thirty-seven valid single nucleotide polymorphisms (SNPs) from an SNP database were used to perform an association study of the Z chromosome in Xinghua chickens. Two SNPs, which were respectively on 9607480 bp and 10607757 bp, were significantly associated with feathering phenotypes. This result indicated the causal mutation of the late-feathering formation in Xinghua chickens was consistent with the previous report which showed the late-feathering locus ranged 9966364–10142688 bp on Z chromosome. Microarray expressions were implemented for six 1-day-old female Xinghua chicks. Compared to the early-feathering chicks, there were 249 and 83 upregulated and downregulated known genes in the late-feathering chicks. Forty-one genes were expressed in late-feathering chicks, but not in early-feathering ones. At least 14 significantly differentially expressed genes were directly related to keratin. In the region of the sex-linked feathering gene, only prolactin receptor (PRLR) gene was a significantly differentially expressed gene. Expression of PRLR in late-feathering chicks was 1.78-fold as that in early-feathering chicks. Late-feathering Wenchang chicks also had higher expression level of PRLR than early-feathering ones. This study suggested that increasing PRLR expression that resulted from the special variant on chicken Z chromosome caused the late-feathering phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号