首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyol dehydrogenases of Acetobacter melanogenum were investigated. Three polyol dehydrogenases, i. e. NAD+-linked d-mannitol dehydrogenase, NAD+-linked sorbitol dehydrogenase and NADP+-linked d-mannitol dehydrogenase, in the soluble fraction of the organism were purified 12-fold, 8-fold and 88-fold, respectively, by fractionation with ammonium sulfate and DEAE-cellulose column chromatography. NAD+-linked sorbitol dehydrogenase reduced 5-keto-d-fructose (5KF) to l-sorbose in the presence of NADH, whereas NADP+-linked d-mannitol dehydrogenase reduced the same substrate to d-fructose in the presence of NADPH. It was also shown that NAD+-linked d-mannitol dehydrogenase was specific for the interconversion between d-mannitol and d-fructose and that this enzyme was very unstable in alkaline conditions.  相似文献   

2.
The crystalline d-mannitol dehyrogenase (d-mannitol:NAD oxidoreductase, EC 1.1.1.67) catalyzed the reversible reduction of d-fructose to d-mannitol. d-Sorbitol was oxidized only at the rate of 4% of the activity for d-mannitol. The enzyme was inactive for all of four pentitols and their corresponding 2-ketopentoses. The apparent optimal pH for the reduction of d-fructose or the oxidation of d-mannitol was 5.35 or 8.6, respectively. The Michaelis constants were 0.035 m for d-fructose and 0.020 m for d-mannitol. The enzyme was also found to be specific for NAD. The Michaelis constans were 1 × 10?5 m for NADH2 and 2.7 × 10?4 m for NAD.  相似文献   

3.
Thermotolerant acetic acid bacteria belonging to the genus Gluconobacter were isolated from various kinds of fruits and flowers from Thailand and Japan. The screening strategy was built up to exclude Acetobacter strains by adding gluconic acid to a culture medium in the presence of 1% D-sorbitol or 1% D-mannitol. Eight strains of thermotolerant Gluconobacter were isolated and screened for D-fructose and L-sorbose production. They grew at wide range of temperatures from 10°C to 37°C and had average optimum growth temperature between 30-33°C. All strains were able to produce L-sorbose and D-fructose at higher temperatures such as 37°C. The 16S rRNA sequences analysis showed that the isolated strains were almost identical to G. frateurii with scores of 99.36-99.79%. Among these eight strains, especially strains CHM16 and CHM54 had high oxidase activity for D-mannitol and D-sorbitol, converting it to D-fructose and L-sorbose at 37°C, respectively. Sugar alcohols oxidation proceeded without a lag time, but Gluconobacter frateurii IFO 3264T was unable to do such fermentation at 37°C. Fermentation efficiency and fermentation rate of the strains CHM16 and CHM54 were quite high and they rapidly oxidized D-mannitol and D-sorbitol to D-fructose and L-sorbose at almost 100% within 24 h at 30°C. Even oxidative fermentation of D-fructose done at 37°C, the strain CHM16 still accumulated D-fructose at 80% within 24 h. The efficiency of L-sorbose fermentation by the strain CHM54 at 37°C was superior to that observed at 30°C. Thus, the eight strains were finally classified as thermotolerant members of G. frateurii.  相似文献   

4.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

5.
A bacterial strain, HN-56, having an activity of d-glucose isomerization was isolated from soil, and was identified to be similar to Aerobacter aerogenes (Kruse) Beijerink. d-Glucose-isomerizing activity was induced when HN-56 was precultured in the media containing d-xylose, d-mannose, lactate, especially d-mannitol. Paper chromatography showed that the ketose formed in reaction system containing d-glucose was d-fructose alone. The optimum pH for the reaction was 6.5~7.0. Sulfhydryl reagents inhibit the reaction, but metal inhibitors affect little if any. With the washed living cells as enzyme source, only arsenate could accumulate d-fructose. In addition, the cells grown with d-mannitol and d-mannose showed no activity of d-xylose isomerase.  相似文献   

6.
We detected carboxymethyl cellulase activity in a crude extract of Acetobacter xylinum KU-1. The enzyme activity was detected when glycerol, d-fructose, d-mannitol, d-glucose, d-arabitol, d-sorbitol, or carboxymethyl cellulose was used as a carbon source. The optimum pH was found to be 4.0, while the optimum temperature was 50°C. The enzyme activity was inhibited characteristically by the addition of Hg2+.  相似文献   

7.
D-Psicose, a new alternative sweetener, was produced from allitol by microbial oxidation of the newly isolated strain Enterobacter aerogenes IK7. Cells grown in tryptic soy broth medium (TSB) supplemented with D-mannitol at 37 °C were found to have the best oxidation potential. The cells, owing to broad substrate specificity, oxidized various polyols (tetritol, pentitol, and hexitol) to corresponding rare ketoses. By a resting cell reaction, 10% of allitol was completely transformed to the product D-psicose, which thus becomes economically feasible for the mass production of D-psicose. Finally, the product was crystallized and confirmed to be D-psicose by analytical methods.  相似文献   

8.
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2 g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase.  相似文献   

9.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

10.
d-Glucose-isomerizing enzyme from Escherichia intermedia HN-500, which converts d-glucose to d-fructose in the presence of arsenate, was purified by treating with manganous sulfate, rivanol, and DEAE-Sephadex column chromatography. About 180-fold purified enzyme preparation was obtained by the above procedures. The purified preparation was free from the activities of d-glucose-, d-galactose-, glucose-6-phosphate-, mannitol-, and sorbitol-dehydrogenases and was homogeneous on polyacrylamide gel in zone electrophoresis. Optima of pH and temperature for the enzyme were found to be pH 7.0 and 50°C, respectively. The enzyme was completely inactivated by heating at 60°C for ten minutes and stable in the pH range of 7.0~9.0 at 30°C. Activation energy for the isomerizing enzyme was calculated to be 15,300 calories per mole degree from Arrhenius' equation. Either in the absence or presecne of arsenate, d-mannose, d-xylose, d-mannitol and d-sorbitol could not be isomerized by the purified enzyme at all, but the present enzyme isomerized exclusively glucose-6-phosphate and fructose-6-phosphate in the absence of arsenate.  相似文献   

11.
We detected dye-linked D-mannitol dehydrogenase activity in the crude extract of Acetobacter xylinum KU-1. The enzyme activity was specific for D-mannitol, and not pyridine nucleotide (NAD+, NADP+)-dependent. The optimal pH was found to be 5.0, while the optimal temperature was at 50°C. The enzyme activity was inhibited by p-quinone noncompetitively.  相似文献   

12.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

13.
An enzyme, which catalyzes the isomerization of d-glucose to d-fructose, has been found in a newly isolated bacterium which tentatively identified as Pacacolobacterum aerogenoides. The enzyme converts not only d-glucose but also d-mannose to d-fructose, and NAD and Mg++ are required as cofactor for this isomerization. The properties of this enzyme were summarized as follows: (1) As a cofactor for the isomerization by this enzyme, NAD was absolutely necessary, whereas NADP, FMN and FAD were not. (2) The optimum pH was found to be at 7.5 and optinum temperature was at about 40°C. (3) The enzyme activity was markedly reduced by EDTA treatment and the reduced activity by EDTA was restored by the addition of Mg++, Mn++ or Co++. (4) The enzyme activity was strongly inhibited by monoiodoacetate, p-chloromercuribenzoate, and Cu++, however, the activity was recovered by adding cysteine or glutathione.  相似文献   

14.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

15.
The regulation of enzyme synthesis has changed in Bacillus subtilis pleiotropic mutant lacking transketolase (tkt). The tkt mutant is hypersensitive to d-glucose repression of the synthesis of d-mannitol catabolic enzymes, such as d-mannitol-1-phosphate dehydrogenase and d-mannitol transport system. d-Gluconate, d-xylose and l-arabinose are also effectors for repression in the tkt mutant. In contrast, the synthesis of sorbitol catabolic enzymes, such as sorbitol permease and sorbitol dehydrogenase, are almost insensitive to d-glucose repression. These changes in the regulation of enzyme synthesis seem to be related to some defect in the cell surface structure of the tkt mutant by which other pleiotropic properties are also generated.  相似文献   

16.
17.
The synthesis is reported of β-D-fructopyranosyl-(2→6)-D-glucopyranose that had previously been isolated from a fermented plant extract as a new saccharide. A disaccharide was predominately formed from an equal amount of D-glucose and D-fructose under melting conditions at 140 °C for 60 to 90 min. This saccharide was isolated from the reaction mixture by carbon-Celite column chromatography and preparative HPLC, and was confirmed to be β-D-fructopyranosyl-(2→6)-D-glucopyranose by TOF-MS and NMR analyses.  相似文献   

18.
The effects of supplemental D-psicose in the diet on diurnal variation in plasma glucose and insulin concentrations were investigated in rats. Forty-eight male Wistar rats were divided into four groups. Each group except for the control group was fed a diet of 5% D-fructose, D-psicose, or psico-rare sugar (3:1 mixture of D-fructose and D-psicose) for 8 weeks. Plasma glucose levels were lower and plasma insulin levels were higher at all times of day in the psicose and psico-rare sugar groups than in the control and fructose groups. Weight gain was significantly lower in the psicose group than in the control and fructose groups. Liver glycogen content, both before and after meals was higher in the psicose group than in the control and fructose groups. These results suggest that supplemental D-psicose can lower plasma glucose levels and reduce body fat accumulation. Hence, D-psicose might be useful in preventing postprandial hyperglycemia in diabetic patients.  相似文献   

19.
The best inducers for D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) were a poor substrate, N-acetyl-;-methyl-D-leucine, and an inhibitor, N-acetyl-D-alloisoleucine. The enzyme has been homogeneously purified. The molecular weight of the native enzyme was estimated to be 58,000 by gel filtration. A subunit molecular weight of 52,000 was measured by SD8–PAGE, indicating that the native protein is a monomer. The isoelectric point was 5.2. The enzyme was specific to the D-isomer and hydrolyzed N-acetyl derivatives of D-leucine, D-phenylalanine, D-norleucine, D-methionine, and D-valine, and also N-formyl, N-butyryl, and N-propionyl derivatives of D-leucine. The Km for N-acetyl-D-leucine was 9.8mM. The optimum pH and temperature were 7.0 and 50°C, respectively. The stabilities of pH and temperature were 8.1 and 40°C. D-Aminoacylases from three species of the genus Alcaligenes differ in inducer and substrate specificities, but are similar with respect to molecular weight and N-terminal amino acid sequence.  相似文献   

20.
A glucose isomerase which reversibly catalyzes the reaction between d-glucose and d-fructose was demonstrated in the cell-free extracts of a strain of Streptomyces sp. isolated from soil. The enzyme was produced when the strain was grown in the medium containing xylan or xylan-containing material such as wheat bran. A medium which consists of 3% of wheat bran, 2% of corn steep liquor and 0.024% of CoCl2·6H2O is recommendabie for the production of the glucose isomerase enzyme with the strain. With the enzyme, some conditions for the conversion of d-glucose to d-fructose were also studied. The method is very useful for the production of invert sugar from d-glucose and is now on the way to be applied to the practical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号